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Abstract 

Microplastics are up to 1 μm, whereas the size of nano plastics are less than 1 μm and widely used in daily life. More than 98% of the 

microplastics in the ocean come from land-based activities. In contrast, secondary Microplastics are formed from plastic bottles and breaking 

down of large Plastics. Microplastics, when combined with microbial toxic substances and chemical toxicity, can potentially have adverse 

impacts on life. It emphasizes the need for further investigation and proposes essential and analytical research that is crucial for policymakers 

and scientists. Government and funding organizations should allocate funds specifically for micro plastics research. To facilitate 

comprehensive research on microplastics, foster collaboration among governmental bodies, academic institutions, and non-governmental 

organizations (NGOs). The sources and effects of micro plastics give in Fig. 1. 
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Introduction 
 

 Plastics are commonly used in everyday life due to their lightweight nature, long-lasting properties, and affordable cost (Meng et al., 

2020). Since 1950, there has been a significant increase in worldwide plastic output, surpassing 2791 million tons as of  2022 (Cai et al., 

2022). Assuming the current situation persists, wastage of plastics is projected to reach 12 billion metric tons by the year 2050, as stated 

by Sobhani et al. (2020). Microplastics are often characterized as particles 1 μm to 5 mm in size, exhibiting a solid state or polymeric matrix 

(not soluble in water) (Frias and Nash, 2019). On the other hand, plastics are 1 nm to 1000 nm classified as nano plastics. T hese nano 

plastics exhibit colloidal properties Gigault et al. (2018), and hazardous to fresh and marine water species (Gigault et al., 2021). Nano 

plastics may not be harmful directly for aquatic life however their negative impact is enhanced after being mixed with environmental 

pollutants. Microalgae, being primary producers are responsible for oxygen production in aquatic ecosystem and they are also associated 

with the presence of microplastics (Wu et al., 2019 Guschina et al., 2020; Wang et al., 2020; Su et al., 2022). Microplastics originating from 

land are primary contributors to the problem of aquatic plastic pollution (Li et al., 2016). According to Meijer et al. (2021), around 1.5% 

(with a range of 1.2-4.0%) of the total 67.5 million unmanaged plastic garbage produced worldwide enters the ocean annually. Hence, it is 

crucial to examine the impact of microplastics on microalgae. Table 1 provides evidence from considerable research indicating that 

microplastics (MPs) have a detrimental impact on microalgae, specifically resulting in growth suppression and damage to cell morphology 

(Wang et al., 2019).  

 

What are Micro Plastics? 

 Micro Plastics are up to 1 μm, whereas the size of nano plastics are less than 1 μm (Gigault et al., 2018). Plastic’s versatility makes them 

ideal for a broad variety of product transformations (Umoren and Solomon 2019; Wu et al., 2020; Wang et al., 2021; Yong and Zhang 2021). 

These include molded components, extrusion sections, fibers, films, sheets, and coatings. Adhesives, paints, and other polymers all contain 

plastics as one of their main ingredients. The most prevalent plastics are polyethylene, polyethylene terephthalate, polyester, polypropylene, 

and polystyrene, respectively (Andrady, 2011). Nanoplastics are synthetic polymers that have chemical additives or plasticizers added to make 

them more resistant, durable, and flexible (Rochman et al., 2013; Seyoum and Pradhan, 2019). Microplastics are widely employed in consumer 

items such medication, cosmetics, toothpaste, face cleansers, and waterproof coatings. The fact that the majority of plastics do not biodegrade 

has made plastic pollution an ever-present threat to ecosystems (Li et al., 2016).  There have been reports of plastic pollution in several 

environmental compartments, including the Arctic (Halsband and Herzke, 2019), the Yangtze River (Xiong et al., 2019), and the Mariana Trench 

(Peng et al., 2018). Due to the far-reaching consequences of plastic pollution on aquatic ecosystems, the issue has garnered considerable 

international attention and concern. 
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Types of Micro Plastics 

 Primary and secondary microplastics are the two main types. Many different industrial and household processes contribute to the 

production of primary microplastics (Perumal and Muthuramalingam, 2022). More than 98% of the microplastics in the ocean come from 
land-based activities. In contrast, secondary Microplastics are formed from plastic bottles and breaking down of large Plastics. Microplastic 

enters in aquatic ecosystem via three main pathways, runoff from roads, treatment of polluted water, and wind transfer (Fiore et al., 2022). 

Natural light and oceanic currents are major factors, lead to Plastics breakdown and Production of Micro Plastics. Fishing nets only offer a 2% 

yield of Micro plastics (Boucher and Friot, 2017). The environmental exposure of microplastics, the development of bio films, and the absorption 
of chemical pollutants all contribute to their complexity (Burns et al., 2018). Some sources of Micro plastics are shown in Figure 2. 

 

 

Fig. 1: Sources and effects of micro 

plastics 
 

 

Fig. 2: Depicts the source of Micro 

Plastics in marine 

 

 

Effects on Human Beings 

 Aquatic organisms are also important constituent of human diet which is important source of micro plastics and nano plastics also. Many 
authors reported the presence of considerable quantity of micro plastics in mussels (Nelms et al., 2016) Respiratory system is also responsible 

for the entrance of microplastics (Gasperi et al., 2018). Nano plastics enter in human blood stream through lungs and spread out in the whole 

body (Lehner et al., 2019). 

 Microplastics greatly affect the physiology and functioning of different organs.  Human chemical coordination consists on endocrine and 
exocrine systems which secreted hormones and control the function of the different organs and systems. Urinary system, cardiovascular system, 

reproductive mechanism, liver and central nervous system affected greatly by micro plastics (Schubert 1972; Cingotti & Jensen, 2019). These 

substances affect the feedback mechanisms of hormonal system, mechanism of response of the different body systems and organs (Olea-

Serrano et al., 2002; Miyagawa et al., 2016). Microplastics may cause cancer of breast and gonads, respiratory disorders and enhance the risk 
of diseases in many countries of Europe due effect on nervous and immune system of humans (Cingotti & Jensen, 2019). 

 Microplastics are found in digestive tract of humans especially in the lining intestine which cause the harms in cellular membrane system, 

transport mechanisms and placental structure and functions (Barboza et al., 2018). Micro plastics are hydrophobic, stable and more resistive, 

toxicity and hazards for human’s increases due to these features (Wright & Kelly 2017). Micro plastics upset the biochemical process, enzymes 
kinetics, and uptake of food and bioenergetics (Bhuyan, 2022). Micro plastics affect the brain functions, neural transmission and cause acidity 

and toxic effects (Mohan-Kumar et al., 2008; Deng et al., 2017). 
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 Prata (2018), reported that micro plastics severely damage the genetic material and oxidative stress which cause the different types of 

cancer. Microplastics are also carrier for pathogens, due to these pathogens serious infections are caused reported Prata et al. (2020) reported 

that the large surface area makes the micro plastics favorable for bacterial and viral attachment.  Many authors reported that micro plastics 
more harmful when it contacts with pathogens and other pollutants (Bakir et al., 2014; Rodrigues et al., 2019). A number of pollutants and 

harmful chemicals with low molecular weight are attached with micro plastics and causing DNA damaging, toxicity. 

 

Effects of Microplastics on Algae 
 Microplastics in aquatic ecosystem are quickly taken up by microalgae, resulting in movement along the food chain and effect the human 

health also. Microalgae serve as the base of aquatic food chains, the impact of micro plastics on these organisms could have cascading 

consequences for ecosystems (Pinto et al., 2023). A correlation exists between particle size and toxicity, with smaller dimensions being 

associated with increased toxicity in microalgae (Nava and Leoni, 2021). Microplastics inhibits the photosynthetic reactions of microalgae (Xu 
et al., 2023). Furthermore, MPs impede the proliferation of microalgae by many mechanisms, Firstly, MPs, when attached to the surface of 

microalgae or present inside the cells, damage the cell walls and membranes and effects the transport system (Nava and Leoni, 2021). Secondly 

MPs that attached to the surface of microalgae can impede the passage of light and effect the photosynthesis (Ye et al., 2023). Microalgae release 

exopolymeric substances (EPS) in response to stress caused by their interaction with plastic particles. This promotes the formation of hetero-
aggregates, which reduce the availability of light. 

 

Table 1: Toxic Effects of microplastics on Algae 

Species name Polymer type Size of microplastic Effect mechanism References 

P. tricornutum Polymethyl methacrylate 
(PMMA) and Polystyrene (PS) 

70–80 for PS and 
40–60 for PMMA 

Pigments, carbohydrates, and Biomass production 
severely decreased 

(Cunha et al., 
2020) 

M. flosaquae and 

C. pyrenoidosa 

Polypropylene (PP) 

Polyvinyl Chloride 

(PVC) 

D90: 21 

D10: 236 

The presence of large amounts of microplastics 

hindered the process of photosynthesis in algae. 

 (Wu et al., 

2019)  

Chlorella. 

reinhardtii 

v-PVC, a-PVC 50 to 100 Decrease in chlorophyll-a concentration; occurrence of 

oxidative harm 

 (Wang et al., 

2020)  

C. sorokiniana Polystyrene <70 PS caused a disturbance in the lipid composition by 

decreasing the levels of two important fatty acids, 
linoleic and linolinic. 

 (Guschina et 

al., 2020)  

C. vulgaris Polyethylene, polypropylene 

 

77.75; 59.88; 57.41; 

53.33 

The presence of this molecule hinders the growth of 

microalgae, while also stimulating the production of 

photosynthetic pigments and the development of 
antioxidative compounds. 

diverse combination of microplastics (MPs) and 

microalgae 

(Su et al., 

2022) 

Rhodomonas 
lens 

HDPE + CPF + Hg 10–15 Influence the viability of cells, the rate of population 
increase, and the amount of pigment present. 

(Pinto et al., 
2023)   

 

Effect of Microplastics on Fishes 

 There is evidence from scientific studies that micro plastics are harmful to fish because they can damage the digestive tract, change their 

feeding behaviour, and decrease nutrient absorption, influence immunological functions, growth rates, and reproduction (Lu et al., 2021). 
According to Koelmans et al. (2022), microplastics have the potential to bio accumulate in fish and pollute the whole food chain as well as 

human health also, which raises concerns about their long-term effects. Microplastics can also cause stress reactions, which have an impact on 

the physiology and general health of fish (Wright et al., 2013). 

 
Effect on Mammals 

 Sharks can come into contact with micro plastics through their gills or by eating. Damage to their digestive systems, nutritional 

obstruction, and change their feeding behaviour might result from micro plastics. Break down of micro plastics in the digestive tract, they may 

release persistent organic pollutants (POPs), which can cause chemical toxicity. Microplastics and related chemical contaminants have the 
ability to bioaccumulate in whale tissues, which adds to their harmful effects. The presence of microplastics in seals' stomachs suggests that 

they may have come into contact with these particles. Toxins may be transferred to higher trophic levels and chemical toxicity can occur when 

microplastics are consumed (Siegfried et al., 2017). 
 

Physical Method for Micro Plastics Removal 

 Studies reveal that adsorption, sedimentation, filtration, etc is categorized as physical approaches for removal of micro plastics. Utilizing 

a novel adsorbent is the most effective method for eliminating MPs through adsorption. Misra et al. (2020) created a composite material 

consisting of a magnetic polyoxometalate-supported ionic liquid phase. This composite was able to eliminate over 90% of PS beads that are1 
to 10 μm in size (Misra et al., 2020). The details of physicals methods are given table 2. 
 

Limitations and Future prospective 

 The examined articles all exhibit deficiencies that continue to restrict our understanding of the impact of MPs on ecosystems. The precise 
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concentrations of micro plastics in the soil and water are currently unknown. This is a result of the limited occurrence of biodegradable 

polymers. Consequently, recent investigations employ either estimated quantities, including exceedingly high levels. Precise measurement of 

the levels of micro plastics (MP) in the environment is necessary in order to effectively replicate the actual pollution conditions in future studies 
(Malafeev et al., 2023). 

 

Table 2: Removal of microplastics by physical methods 
Methods Principle of 

Technique 
Efficiency  Microplastics 

type 
Adventages Disadventages References 

Magnetic Polyoxometalate-
Supported Ionic Liquid 
Phases 

Physisorption Almost 90 % Polystyrene 1. The device has the 
capability to identify and 
eliminate contaminants in 

water, including organic 
compounds, inorganic 
substances, and microplastics. 

2. Optimal effectiveness. 

1. Only relevant for 
polystyrene (PS) 
microplastics ranging in 

size from 1 to 10 
micrometers (μm). 

(Misra et 
al., 2020) 

Biochar adsorbents Physisorption 100 % All microplastics 1. Maximum adsorption 
capacity. 

2. Highly efficient. 
3. Very cheap. 

1. Not effective for 
eliminating MPs that are 

of micrometer size. 

(Siipola et 
al., 2020) 

Zirconium metal-organic 

frame-work based foams 

Filtration 96% All microplastics 1. Efficient removal of MPs 

in both freshwater and marine 
water environments. 
2. Applicable for the 

elimination of MPs in all types 
of suspensions, regardless of 
their concentrations. 

3. Solar-powered 
automatic filtering system. 
4. Recycleable 

1. Large-scale 

filtration experiments, 
which are often 
conducted in 

laboratories, are 
essential for practical 
applications. 

(Chen et 

al., 2020) 

Rapid sand filter Filtration 97.5 % All microplastics 1. Very cheap 
2. Easy to handle  
3. Applicable for all types of 

MPs 

1.  Only effective on 
>20 μm size of MPs. 

(Talvitie et 
al., 2017) 

Disc filter Retention 89.5 % All microplastics 1. Highly efficient 
2. Very cheap 

3. Easy to handle 

1. Not useful for 
smaller MPs 

2. High maintenance 
required 

(Talvitie et 
al., 2017) 

Dissolved air flotation Floatation 95.5 % All microplastics 1. Highly efficient 1. Useful only for low 

density particles 
 

(Talvitie et 

al., 2017) 

Magnetic carbon nanotubes Physisorption 99 % All microplastics 1. Highly efficient 1. The efficiency 

diminishes with 
repeated use. 

(Tang et 

al., 2021) 

Coagulative colloidal gas 

aphrons 

Physisorption 94. 5 % Carboxyl-modified 

poly-(methyl 
methacrylate) (PMMA) 
and unsurface-coated 

polystyrene (PS) 

1. Highly efficient 

2. Efficiency not affected by 
salanity 

1. Size dependent 

efficiency 

(Zhang et 

al., 2021) 

Non-fluorinated 
superhydrophobic 

aluminum surface 

Physisorption 99.5 % Polypropylene 1. Applicable in natural 
condition 

2. Highly efficient 

1. Efficiency only 
examined with 262 μm 

size of MPs 

(Rius-Ayra 
and 

Llorca-
Isern, 
2021) 

Graphene oxide and Chitin 
made up with sponges 

Physisorption The percentages for 
clean polystyrene, 
amine-modified 

polystyrene, and 
carboxylate-
modified 

polystyrene are 
9.8%, 88.9%, and 
72.4% respectively. 

Polystyrene, amine-
modified polystyrene 
and carboxylate-

modified polystyrene 

1. The sponge's reusability, 
biodegradability, and 
biocompatibility enhance its 

suitability for removing MPs. 
 

1. Complicated (Sun et al., 
2020a) 

Magnetic micro-submarines Induced fluid 
flow 

70 % All microplastics 1. Easy to handle 
2. Environment friendly 
3. No chemical required 

4. High adaptability 
5. Good efficient 

1. Less efficient than 
other methods 
2. Very expensive 

(Sun et al., 
2020b) 
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Retention of microplastics in 

a large-scale secondary 
wastewater treatment 
system 

Sedimentation 91. 8 % All microplastics 1. Low cost 

2. Harmful chemicals not 
required 
 

1. Not applicable for 

smaller MPs 

(Gies et 

al., 2018) 

The combination of chemical 
alum coagulant and alum 
with cationic polyamine-

coated sand 

Coagulation 
and 
flocculation 

70.8 %–92.7 % Polyethylene (PE) 1. MPs removal efficiency 
increased 

1. Not applicable for 
smaller size MPs (10-30 
μm) 

(Shahi et 
al., 2020) 

 

 The existing research unequivocally demonstrates that the toxicological impacts of MPs on living species and ecosystems are contingent 

upon several elements, such as their composition, concentration, and size, in intricate ways. It is challenging to determine the specific impact 
of each component on the possible harms linked to MPs, as there is a scarcity of comparative laboratory studies that are capable of detecting 

the variations in these pertinent factors. Specifically, the surface-to-volume ratio of MPs greatly determines their degradation kinetics. In 

additions, analyses are necessary to close this gap in knowledge. Another constraint arises from the utilization of unaltered plastics, primarily 

inside tightly regulated environments (Wang et al., 2021). 
 An all-encompassing database is required to specifically address the relationship between microplastics, human and other animals, in 

order to elucidate the effects of micro plastics on animals and their ability to break down these pollutants. It is essential to investigate the 

molecular processes that explain how microplastics affect the functional genes and metabolism in mammals (Li et al., 2023). 

 Microplastics, when combined with microbial toxic substances and chemical toxicity, can potentially have adverse impacts on life. It 
emphasizes the need for further investigation and proposes essential and analytical research that is crucial for policymakers and scientists.  

 Future Studies should incorporate environmental scenarios that consider the concentration, shape, size, and aging of micro plastics. The 

existing research fails to provide a clear resolution to the ongoing dispute on the potential of micro plastics to serve as vectors for polluting 

aquatic systems (Avio et al., 2015). This is due to the fact that MPs micro plastics make up less than 3% of the diet in aquatic systems. It was 
also emphasized that the bioaccumulation of OCPs is low and does not generate any toxicological effects. 

 Now-a-days, there are no proper methods to quickly and accurately measure and identify pollutants that are attached to micro plastics 

and related groups. Hence, further investigations could prioritize this key domain. Scanning electron microscopy and high-throughput 

sequencing, along with techniques like DNA fingerprinting and gel electrophoresis have provided evidence that microbes and their appendages 
are connected to micro plastics. Nevertheless, further clarification is required about the specific manner in which the organisms are connected 

to micro plastics and the subsequent influence on genetic exchange (Tumwesigye et al., 2023). 

 Government and funding organizations should allocate funds specifically for micro plastics research. To facilitate comprehensive research 

on microplastics, foster collaboration among governmental bodies, academic institutions, and non-governmental organizations (NGOs). The 
utilization of open-access data repositories facilitates the seamless sharing of datasets and research findings pertaining to micro plastics.  

Develop workshops and training programs aimed at educating scientists on the techniques involved in sampling, analyzing, and identifying 

micro plastics (Thacharodi et al., 2023).                          

 
Conclusion 

 Micro plastics are used in a number of industries including cosmetics, medicines and packing industries. Occurrence of micro plastics in 

air, water, land and food items for human and animals are possible. The micro plastics in environments greatly affect the living organisms as 

well as whole aquatic and terrestrial ecosystems.  Micro plastics hazardous for all type of life including plants, animals and human beings also. 
Micro plastics are more harmful when it combined with other pathogens and microbes. Micro plastics also affect the zooplankton, 

phytoplankton and fresh water organisms. It reduces the growth of organisms, metabolic reactions, reproductive mechanisms, nervous systems 

and sometimes deaths. Complete remediation of micro plastics from the environment is not possible but by using different strategies, the level 

of micro plastics can be reduced. So we need to investigate the new methods and strategies for the removal and remediation of micro plastic 
pollution Government and other funding agencies should allocate funds for micro plastics research, removal strategies and policies. 
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