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Abstract 

Ecology is interaction between organisms in environment that play crucial role in the sustainability of ecosystem by regulates various 

environmental processes for benefit of global biota. Sometimes these interactions trigger changes that facilitate the circulation of pathogens 

within ecosystem. Ecology and disease ecology provides better insights into understanding disease dynamics and out-break management. 

The key reason in increase and expansion of emerging infectious diseases which are directly associated with human-driven factors including, 

deforestation along with global climate changes and urbanization. Alongside modernization, these worldwide anthropic modification being 
the cause of the emergence of diseases for wild and livestock animals, and even humans. Emerging pathogens and zoonosis raise pervasive 

health risks in both animal and human populations. By use of ecological fundamentals with epidemiological modelling approaches provide 

useful insights in mitigating the exacerbating threats caused by zoonotic spillover. Epidemiological models including meta-population models, 

compartmental models, agent base models (ABM) together with machine learning models facilitate valuable data like disease prediction, 
improve both ecosystem and public-health in terms of disease transmission and control. Overall, ecology in combination with epidemiological 

modelling and disease ecology provide multidisciplinary framework for human and non-humans species health 
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Introduction 
 

Environment of organism comprises of both biotic and abiotic components. Both of these components interact with each other and utilize 

resources that are available in ecosystem (Friant, 2024). Ecology offers a wide range of environmental services as well constitute life 

maintenance systems that are foremost in global health (Small et al., 2017). Interaction among animals, human and environment allow the 
transmission of zoonosis and pathogens from animals to humans. During the previous decades, a prominent rise in the transmission of 

pathogenic agents was detected. Threats of pandemic become more and more perilous with the circulation of epidemics and zoonosis as well 

as epizootics (Destoumieux-Garzon et al., 2018). Outbreak of infectious diseases linked with human influences of animal species and their 

habitats can have substantial effect on human economies, societies and biological diversity conservation (Cunningham et al., 2017). 

Increase in the possibility of infectious diseases emergence rise with the alteration in land utilization such as, intensification of agriculture 
and deforestation (Bernstein et al., 2022). With the utilization of these relationships, aids in numerous challenging and complicated 

environmental issues (McCallen et al., 2019). As an important application, disease ecology a subfield of ecology deals with environmental and 

evolutionary factors that impact on transmission, exposure and acquisition dynamics of pathogens between and within human and animal 

populations (Balasubramaniam et al., 2020). This field is important to improve our capability to predict, understand and mitigate the influence 
of emerging pathogens diseases and endemics in wild populations. Additionally, outbreak of pathogenic diseases is predicted to be aggravated 

due to modern problems such as dense human population, climate change and natural ecosystems fragmentation (Valenzuela-Sanchez et al., 

2021). 

In order to counter these outbreaks, epidemiological modeling drive a key role in public health planning, both in means of general 
understanding of disease transmission and control also in terms of predictions for specific situations (Hilton & Keeling, 2019). Adapted from 

ecology species distribution models, joint species distribution models, hierarchical spatial temporal models and mathematical models as well 

as machine learning interdisciplinary approaches have significant role in public health planning, mapping out disease risk and recognizing 

zoonotic disease relationships (Hassell et al., 2021).  

 
Ecology and Disease Dynamics 

Disease ecology is regarded as crucial for understanding infectious disease dynamics (Johnson et al., 2015). Hosts are commonly affected 
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by several parasites and these parasites often spread among various hosts as shown in figure 1. Ecology needs to understand and manage 

emerging diseases which are inherent in natural systems but are frequently aggravated by societal imbalances (Carlson & Mendenhall, 2019). 

For instance, the effect of degradation of habitat on pathogen spillover are increasing an area of research that can be utilized to inform risk 
evaluation and environmental strategy (Plowright et al., 2021). It is necessary to develop a strong foundation and expertise for study of 

infectious disease in their evolutionary and ecological environments to establish an adequate way of living and increase ecosystem and wildlife 

health; for instance, we continue to confront challenges such as developing pathogens (Andersen et al., 2020). 

 

 

Fig. 1: How Disease Transmit in 

Ecosystem. 

 

 

Ecology and Disease Transmission  
Transmission is key to disease Ecology and epidemiology as well as transmission emergence of parasites and vectors, which is versatile 

and complicated (Antonovics et al., 2017). Pathogens spread through a wide variety of pathways and depends on the pathogen’s resilience in 

the environment, temperature, climate, virulence and infectious threshold. Pathogenic microbes are transmitted by contact, air, water, food, 

contaminated equipment and the environment, more rarely vector-borne by insects or animals. Furthermore, the rate of transmission is rising 
due to the increased mobility, climate change, overcrowding, war and natural disasters, poor hygiene and inadequate infection management 

(Anderson and Anderson, 2019). Pathogenic microorganisms come from the environment or an affected host, which may be a human or another 

animal. Direct or intimate contact with an infected person or animal is the only way to spread many human infections as shown in Table 1. 

 

Table 1: Different modes of transmission that transmit numerous kinds of diseases between animals and humans.  

Modes of transmission Effect Citation 

Direct contact  An infected host transmits a disease directly to another host via direct contact as AIDS 

(Immunodeficiency Syndrome) caused by HIV (Human Immunodeficiency Virus) 

(Meena et 

al., 2019) 

Indirect contact Occur via fomites present within the immediate environment of an infected patient and the objects used 

on the infected person. 

(Cai et al., 

2020). 
Vector borne 

transmission 

Vector-borne diseases are transmitted from person to person via a competent vector, such as mosquitoes, 

midges and flies. More than one million people per year dying of malaria, dengue and schistosomiasis. 

(Eder et al., 

2018) 

Airborne transmission Some (particularly small) droplets can remain airborne for longer periods of time and travel considerable 

distances, providing path for disease transmission. 

(Nazaroff, 

2016) 

Water borne 
transmission 

Waterborne diseases are transmitted by the fecal oral route, from human to human or animal to human, 
so that drinking water is only one of several possible sources of infection. 

(Gerba, 
2015) 

Zoonotic transmission  Diseases that affect humans originally came from animals and many of them are Ebola, human 

immunodeficiency virus (HIV/AIDS), avian influenza and Monkeypox. 

(Zucca et al., 

2021) 

 

Animal and Zoonotic Eco-Epidemiology 
Emerging zoonotic diseases represent progressively growing risk to world health as well as impact on global health care system specifically 

developing countries (Shaheen, 2022). Diseases transferred among animals and humans referred to as zoonotic diseases. There are over 200 

widespread diseases among animals and humans, a number of which can be transferred through direct contact and several by animal derived 

products (Nemeth, 2024). Zoonotic diseases might be viral, parasitic, and bacterial or incorporate unconventional substances including fungi 
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and protozoans (Ferreria et al., 2021). Based on transmission modes zoonotic diseases can be categorized into different types as highlighted in 

Table 2 (Zhang et al., 2024).  

 
Table 2: The zoonotic disease transmits from animals to humans, these diseases significantly affect human a lot in previous decades.  

Zoonotic Diseases Effects on Humans Citations 

Covid-19 Respiratory infections as well as a wide range of metabolic, neurological, 

pulmonary and cardiac issues. 

 (Lenz et al., 2024) 

Rabies Central nervous system (CNS) damage  (Bastos et al., 2023) 
Influenza .Upper respiratory tract infections range from mil severe, causing fever, chills, 

muscle soreness, pneumonia, and even death. 

 (Swierczynska et al., 2022) 

Human Immunodeficiency 

Virus (HIV) 

HIV weaken the body’s defenses against infections and cancers by destroying 

specific types of white blood cells. 

 (Menza et al., 2024) 

Ebola Multiple organ failure and consequences from hemorrhage (Hussein et al., 2023) 

Zika Virus Pregnancy-related fetal abnormalities are caused by microcephaly.  (Kadu et al., 2024) 

 

Leptospirosis 

Encephalomyelitis, hydrocephalus, and mild (headaches, muscle soreness) to 

severe (jaundice, renal failure). 

 (Javed et al., 2024) 

Hantavirus Pulmonary 

Syndrome 

Hemodynamics instability and respiratory failure in kids and teenagers. 

 

 (Hall et al., 2024) 

Middle East Respiratory 

Syndrome (MERS) 

High death rate, pneumonia and respiratory infections.  (Al-Tawfiq & Memish, 2023) 

 
Social Services Impact on Infectious Disease Dynamics 

Anthropogenic pressures including climate change, urbanization and deforestation have progressively altered the integrity of global 

ecosystem, threatening their ability to deliver vital benefits that supports human well-being (Marcolin et al., 2024). Change in climate 

significantly facilitate zoonotic and animal diseases globally, destabilizing natural ecosystem providing more viable ecosystem for diseases 
outbreaks as shown in Figure 2. This assist disease causing viruses, fungi and bacteria to move into new ranges, harming livestock species, 

humans and wildlife (Abdela & Jilo, 2016). Climatic disruption can have direct or indirect impacts on diseases spillover (Bett et al., 2017). 

 

 

Fig. 2: How Climate Change 

Fcilitates Pathogens. 
 

 

Deforestation is another significant issue has been associated with increased risk of zoonotic diseases as shown in Figure 3 (MacDonald & 
Mordecai, 2019).  Human explorations into new areas and formation for recreational activities that elevates the interaction between animal 

and humans. Additionally, zoonosis risk increases significantly with frequent contact with livestock species, domestic pets, birds and rodents 

as well as interaction with exotic species (Green et al., 2020). The recent pandemic, the covid-19 has many effects on food supply domain and 

global health (Attia et al., 2022). The increase in cities and peri-urban zones has directed to expansion of numerous infectious endemics by 
several means. Urbanization increases the proportion of paved areas that limits the species diversity, change species composition, reduce 

availability of natural habitat and warms the climate, increases human density leads to changes in social structure, inequality and behavior 

(Bharti et al., 2015).  

The diseases caused by mosquito borne viruses, included Zika, chikungunya, dengue facilitated by Aedes aegypti are the canonical diseases 

linked to urbanization (Nova et al., 2022). Change in land use is process in which unmodified wildlife habitats are altered by human actions, 
whereby this anthropic modified land serves for economic activities (Winkler et al., 2021). These activities create habitat fringes at the 
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intersection between human and wildlife, elevating the potential for facilitation of infections within human, domestic animals and wildlife 

(Glidden et al., 2021). Likewise, severe weather processes such as heat waves, droughts, dryness or water scarcity, heavy rainfall and flooding, 

melting snow and wildfires highly contribute to the outbreaks of pathogenic diseases (El Sayed et al., 2020). 
 

 

Fig. 3: Contemporary 

anthropic pressures such 

as climate alteration, 
deforestation and 

urbanization and 

agricultural 

intensification leads many 
negative impacts on 

ecosystem that facilitate 

zoonosis emergence that 

create problems for global 
health. 

 

 

Eco-Epidemics Modeling 

A number of models and functional categories have been developed to gain a better understanding of ecological systems and the diseases 

they regulate (Machado & Oliveira, 2024). In ecological fields, models are simplified representations of complicated systems. Depending on the 
study's goal, models might be anything from extremely comprehensive to more generic. Their classification is based on their prediction skills, 

which impacts their use in research by either extrapolating beyond observed conditions or interpolating within known data ranges (Escobar, 

2020). In the study of ecological systems, modeling has emerged as a key instrument. Ecological modeling can assist implement sustainable 

development, mathematical models and system analysis that illustrate how ecological processes might support sustainable resource 

management (Abbasi et al., 2024). For a number of infectious diseases, reports of the geographic locations of pathogens, disease vectors or 
reservoirs are growing in quantity, high quality and easily accessible. These factors can be coupled with disease data to rebuild or forecasting 

the geographic distribution of vector-borne (e.g., Bluetongue), environmentally (e.g., Anthrax) and directly transmitted diseases (e.g., Rabies), 

that are significant to veterinary medicine (Hengl et al., 2017). 

Two significant areas of study in mathematical biology are ecology and epidemiology. Eco-epidemiology is the field that coupling 
epidemiology and ecology. Eco-epidemiology incorporates epidemiology and ecological approaches to examine how infectious diseases affects 

ecological communities and how interspecific interactions can change disease dynamics (Gomez-Hemandez et al., 2024). Mathematical 

modeling of ecological interaction is an important tool to predict population growth, predator-prey relationships, and disease transmission 

patterns (Berg et al., 2018). Compartmental models, agent-based models (ABM), and machine learning models are the three primary types of 
mathematical models that are used to shed light on the overall course of an epidemics, capture the intricacy of individual interactions and 

behaviors, detect patterns and forecast future trends as well as meta population, spatial and contact models are utilized to address diseases that 

transmit throughout fragmented wildlife populations (Gomez-Hemandez et al., 2024). 

 
Compartmental Models 

Compartmental modeling is one of the main methods for tracking the spread of an epidemic. The study of infectious disease transmission 

frequently makes the use of compartmental models, such as the SIR and SEIR models. Differential equations are used in these models to 

represent how individuals migrate between the distinct compartments into which population is divided. However, recent studies have been 

modeling the spread of disease in real-world environment using stochastic techniques (Ward et al., 2023). 
 

1. SIR Model 

The hypothesis of homogeneous mixing underlies the SIR model’s action, it’s frequently an erroneous presumption because people can 

communicate in different ways depending on their surroundings.  In epidemiology, in spite of its clarity this model is intrinsic and prime 
approach that give the perception about fundamental processes of illness (Mendes et al., 2024).In its standard version, the SIR-model exhibit 
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in following shapes S(t) for susceptible, I(t) for infectives and R(t) for recovered (including deceased) individuals. A precise set of equations 

link the constraints of this model for the spread of illness (contact rate α) and rehabilitation (and death) (factor β) (Kudryashov et al., 2021). 

Regarding a microbe, granting immunity from upcoming infections, a subsequent group of equations emerges from this segmentation that 
illustrate how people move from one disease to another. 

Susceptible(S)  
𝑑𝑆

𝑑𝑡
= 𝜗 − 𝛽𝑆𝐼 −  𝜇𝑆 

Infected (I) 
𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 − 𝛾 −  𝜇𝐼 

 Recovered (R) 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

In mathematical representation of contagious illnesses, an explanation of coefficients and factors are frequently utilized. To estimate and 

control the epidemics of ecological illness the SIR model is successfully utilized in various examinations (Li et al., 2024). This model is significant 

in evaluating population health approaches, anticipating COVID-19 epidemic waves and calculating the effectiveness of treatment. Significant 
limitations are associated with the traditional SIR model. Suppose the total population N=S+I+R is fixed, as an example. Moreover, population's 

size fluctuates because of external influences when the contagious diseases do not vanish instantly like COVID-19. Assuming that every diseased 

person either gains immunity or dies is another significant limitation (Li et al., 2024). 

 
2. SEIR Model 

The SIR framework is expanded upon by the SEIR model (Susceptible-Exposed-Infected-Recovered), which includes an "exposed (E)" 

compartment for infected but non-infectious people. The illnesses with symptoms that are not visible, such as tuberculosis and chickenpox, 

isolation states have been added to the SEIR model (SA et al., 2023). During the COVID-19 pandemic, this modification was essential for 
improving the resource distribution and forecasting infection trends (Kamrujjaman et al., 2022) The SEIR model utilized for concentrating on 

the part infected Aedes albopictus mosquito eggs play in transmission dynamics and in investigating dengue hemorrhagic fever. Functional 

programming is utilized for imitation and stability assessment. By utilizing mass-action law, most of these models depict the changes between 

different demographic groups. This makes it impossible to replicate the observable aspects of an infection, such as the development of illness 
symptoms and gestation time. Nevertheless, these models failed to consider the non-testing subpopulations, asymptomatic carriers and severity 

of the illness's course (Kiselev et al., 2023). 

 

Agent-Based Models (ABMs) 

Agent-based models have demonstrated themselves to be an influential tool, predicting future impacts for varied situations and provides 
insights into disease dynamics, which direct populations at the individual level, resulting in combined system evolution and are particularly 

well suited to capture the complex individual behavior, making these models suitable tools for analyzing disease expansion within highly diverse 

populations (Suer et al., 2023). A valuable framework for the analysis of complex systems, provided by ABM, models individual components, 

their interactions and actions within an environment. It also evaluates the evolution of virus infections in a society and provides a beneficial 
tool for examining social aspects (Khodabandelu & Park, 2021).  

Various cases, like social interplay and incorporating mobility limitations, can be modified by ABMs, which are key to understanding 

epidemic dynamics. Disease dynamics efficiently represent via agent-based models by expressing artificial populations and their interactions, 

which are significant for informing epidemiological approaches and the spread of infection. In contrast, ABMs may introduce biases due to 
presumptions about different populations' baseline risks and causal structures, influencing the precision of extensibility of observations and 

disease expansion hypothesis (Keyes et al., 2017). Agent-Based Models (ABMs) provide resilience for real-world modeling but are frequently 

unappreciated by statisticians due to challenging probability functions, which are difficult for variance determination and parameter estimation. 

Yet, this approach faces limitations in parameter recognizability and statistical efficiency (Um & Adhikari, 2024). 

 
Machine Learning Models  

For example, it becomes possible to expand further the current understanding of these processes by applying the currently developed 

analytical techniques such as machine learning (ML) to data growing in dimension. This might give new insight into subtle ecological 

phenomena, such as disease spread in isolated populations (Han et al., 2020). They are better in terms of measuring the relationship between 
the variable and non-linear inter-variables and results compared to the basic statistical models (Alaa et al., 2019). Logistic regression worked 

better, instead of this, the novel analytics tools ML centering enhance their understanding of ecological processes and pathogen transmission 

processes (Han et al., 2020). However, complex non-linear machine learning models may limit the biological interpretability of differential 

expression, which has not been an issue up to this point. This might lead to inadequate downstream analysis, validation, and overall biological 
characterization (Choi et al., 2020). Due to this reason, deep learning models can be suitable where such a system can handle complex and 

large pictures; they are perfectly designed for high-resolution photographs (Ullah et al., 2019). However, these methods can't be very effective 

for invisible conditions because large amounts of labeled training data are needed. Furthermore, some applications are constrained by the 

computing costs of machine learning models (Ali et al., 2023).  
 

Meta-Population Model 

Population structure significantly affects the demography of social species as well as the spread of infectious diseases in their populations 
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(Brandell et al., 2021). Infectious diseases mainly spread locally between individuals in physical contact, but group-to-group movement can 

facilitate geographical spread. Metapopulational models originally devised for ecological purposes have been very successful in describing 

spatially the dynamics by dividing populations into subpopulations. This theory suggests that transmission rates are higher in a group than 
between groups, thus leaving it possible for every subpopulation to have characteristics that are mainly isolated (Berg et al., 2018).  

Mathematical models play an important role in epidemiology, as seen during the COVID-19 pandemic, making it important for researchers 

to re-examine the essential metapopulation model applied early during this crisis. Through self-critical data analysis, they conclude that the 

lockdown initiated in China, 2020, was more effective than assessments earlier claimed (Li et al., 2024).Two critical parameters of a species' 
social structure are the total number of individuals and the number of populations in a community, which scientists keep track of through a 

meta-population model. We apply a global model to fit this model and simulate the evolutionary trajectory of the Yellowstone population of 

wolves and two associated diseases, eczema and feline malnutrition (Brandell et al., 2021).  

 
Network Models  

Network models focus on connections that exist between individuals or groups, outlining the roles of interactions in disease spread. In 

wildlife disease ecology, contact network models are more commonly used to describe how infections spread within social groups wherein 

contacts between animals are not random but structured (Berg et al., 2018). Ecological Interaction Networks are graphs that represent species 
interaction and illustrate the structure and dynamics of ecosystems. Social Interaction networks analyze relational data and communications 

patterns, using Bayesian frameworks to model interactions effectively; therefore, effective disease preparedness is required to mitigate the 

possibly devastating impact of disease on the aquaculture industry. This paper describes the stochastic, data-driven Aquaculture Disease 

Network Model, AquaNet-Mod, for disease epidemic and control measure assessment in aquaculture and is coupled with a case study of Viral 

Hemorrhagic Septicemia in the salmonid industry, work still in progress (Khodabandelu & Park, 2021). 
The model simulates transmission through several pathways, namely live fish movement and river spread. Network models often rely on 

the assumption of random mixing in populations. This neglects social network structures, which can lead to misleading estimations of 

important epidemiological parameters, such as herd immunity thresholds and the basic reproduction number. A study reveals that super-

spreading events are scale-free or extremely heterogeneous; in other words, applying the random-mixing assumption might be highly 
overestimating predictions of infectiousness. Heterogeneous and dynamic networks may also contribute to having more than one wave of 

infections, which is not predictable by random mixing (Rosenkrantz et al., 2022).  

 

Conclusion 
The Interdependence among humans, animals and the environment facilitate the transmission of pathogens in animals to humans, become 

cosmopolitan health problem. These novel pathogen and diseases create new challenges for wildlife and public health. By utilization of 

epidemics ecology provides better understanding of disease dynamics and essential approaches against epidemics.  In rapidly changing world 

where social pressures such as climate change, urbanization, deforestation and agricultural intensification have large contribution in the 

emergence and transmission of disease outbreaks. To mitigate these problems, ecological and epidemiological modeling proves as 
interdisciplinary approach that helps in the prediction and map-out high-risk areas as well as preventive measures to minimize the zoonosis 

spread. Further epidemiological models including mathematical models, agent-base models (ABM) and machine learning disease models are 

modern tools provide data about complex species interaction and important measures in improvement of environmental and public health. 

With certain advantages, epidemiological modeling still faces limitations that requires an improved framework for real time disease predictions 
as well as further utilization of ecological disease modeling at genetic level can be a holistic approach in global health. In addition to this, direct 

human intervention in ecosystem health alteration should be minimized by conservation efforts. 
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