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INTRODUCTION 

 
Hydatidosis or Cystic Echinococcosis (CE) is a zoonotic 
disease resulting from Echinococcus granulosus 
metacestode infection. Several investigations described it 
as an emerging or re-emerging infection, with high 
medical and economic impacts in many countries (Moro 
and Schantz 2009; Eckert e al. 2000). Also, it is classified 
as a neglected tropical illness (WHO 2001). The disease is 
endemic in rural sheep-raising areas, where dogs 
consume the infected animal organs. In Iraq, the disease 
is considered hyperendemic, with high socio-economic 
outcomes owing to the infection of both humans and 
their livestock (Benyan et al. 2013). Sadjjadi (2006) 
reported an increasing trend in CE cases in North Africa, 
Middle East, and Iraq. Three techniques for curing the 
Echinococcosis infection of liver are known; these include 
operation, percutaneous aspiration, and chemotherapy 
(Adas et al. 2009). Surgical procedure remains the 
primary therapeutic method for CE, but other procedures 
may play an efficient role in its management (Pitt and Pitt 
2013). Leakage of cystic fluid rich with protoscoleces is the 
leading cause of recurrence; therefore, scolicidal materials 
are used for inactivating the protoscoleces during surgical 
operation. However, these materials have many adverse 
effects (Shi et al. 2016). 
Hypertonic saline is applied as protoscolicidal material 
now-a-days. Still, it causes hypernatremia, which in turn, 
results in convulsions, intracranial hemorrhages, necrosis 
and degeneration, and myelinolysis (Albi et al. 2002; Adas 
et al. 2009). Benzimidazole is the main therapeutic agent 
used for CE therapy. Unfortunately, it shows several side 
effects, such as leucopenia, alopecia, liver toxicity, and 
thrombocytopenia (Junghanss et al. 2008), as has been 
shown in Table 1. 
Additionally, Benzimidazole is characterized by its 
reduced water solubility, which results in its low 
bioavailability. Consequently, low gastrointestinal 
absorption leads to insufficient systemic availability and 
reduced efficacy against CE (Evrard 2002). For this 
reason, many experimental studies were conducted to 
increase the effectiveness of albendazole. Among these, 
Shuhua et al. (2002) prepared this medication in soybean 
oil emulsion and tested it in murine Echinococcosis. In 
addition, new plans were tested to determine novel 
protoscolicidal green synthesized compounds from these 
plants. In this regard, Kohansal et al. (2017) reviewed the 

publications published from 1996 to 2015 and 
concentrated on the plant extracts that exhibited 
significant protoscolicidal effectiveness. Moreover, the 
protoscolicidal properties of Curcuma longa, Zingiber 
officinale, and Cyperus rotundus extracts were examined 
(Almalki et al. 2017; Shnawa et al. 2017). The findings 
revealed the possible efficacy of these plant extracts 
against Echinococcosis.  
Nanoparticles (NPs) possess a broad choice of 
applications, especially in the medical aspect, which show 
significant signs of progress in developing different 
methods for improving drug ability, drug distribution, 
diminishing toxicity of medications, and allowing the 
programmed nanomaterial production (Rai et al. 2017). 
This chapter highlights the NPs, mainly focused on the 
greenish biosynthesis processes. Besides, it explains the 
protoscolicidal ability of NPs by reviewing the most 
recent published papers concerning this aspect. These 
studies may permit the discovery of an innovative healing 
alternative for hydatid cyst disease. 
 
Classification of Echinococcus granulosus 
 

Previously, E. granulosus was considered one species of a 
broad genotypic and phenotypic differences, whereas now 
it is recognized as a group of cryptic species that vary in 
shape, growth, host specificity, and ability to infect 
humans. Also, variation in mitochondrial and nuclear 
genes has created phylogenetic trees and propositions of 
different taxa ancestries. Recent studies have molecularly 
subdivided this species into E. granulosus sensu stricto 
(includes G1-3), E. felids (priorly 'lion strain'), E. equinus 
('horse strain,' genotype G4), E. ortleppi ('cattle strain,' 
genotype G5) and E. canadensis. The last one displays the 
most comprehensive diversity, and it includes 'camel 
strain' of genotype G6, 'pig strain,' related to genotype G7, 
along-with double 'cervid strains,' G8 and G10 (Romig et 
al. 2015). In this regard, and most recently, nucleotide 
sequence alignments of mitochondrial cytochrome c 
oxidase subunit 1(cox1) gene were performed for 
characterizing the liver hydatid cysts of sheep and cows in 
Iraq. The finding showed that all samples belonged to the 
G1 sheep strain (Abdulla et al. 2020). 
Based on the reports of Thompson (1986), Rausch (1997), 
and Roming et al. (2015), E. granulosus belongs to the 
following classification: 
Phylum: Platyhelminthes.  
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Superclass: Eucestoda.  
Class: Cestoidea.  
Subclass: Cestoda.  
Order: Cyclophyllidea Ben; Braun, 1900.  
Family: Taeniidae Ludwig, 1886.  
Genus: Echinococcus Rudolphi, 1801. 
Species: Echinococcus granulosus Batsch, 1786 
 
Life cycle of Echinococcus granulosus 
 
Dual vertebrate hosts are needed for completing the life 
cycle of Echinococcus granulosus. Protoscoleces play an 
avital role in initiating the life cycle of this parasite 
because it is the infective stage for the carnivores (dogs), 
representing the final host (Galindo et al. 2008). The 
Echinoccocal worms attach to the mucosa of the small 
intestine of dogs and produce eggs. The eggs can infect 
humans and other susceptible herbivores, like sheep and 
cattle (Walker et al. 2004). Humans can be infected by 
accidental consumption of the embryonated eggs and are 
known as closed way hosts for Echinococcosis. After their 
consumption by the intermediate host, eggs hatch 
releasing the embryos that penetrate the mucosa and then 
find their way via blood or lymph to the liver, lungs or to 
other sites to produce unilocular fluid-filled hydatid cysts. 
When the definitive hosts consume viscera of infected 
animals  with the metacestodes, the protoscoleces 
evaginate, attach to the mucosal lining of their intestine 
and grow into the worm stage (Fig. 1). 
 
Hydatid Cyst Structure 
 
The hydatid cyst structure of E. granulosus contains three 
layers: i) the external pericyst originates from host cells 
and produce a fibrous, protective tissue; ii) then comes 
the laminated membrane (exocyst layer), which is non-
cellular and permits the semi permeability of nutrients; 
and iii) the internal germinal layer (endocyst), where the 
brood capsules are produced. A fully developed cyst 
contains brood capsules with protoscoleces and is filled 
with clear fluid, which is rich in daughter cysts and 
protoscoleces, as shown in Fig. 2 (Eriksen and Agopian 
2017; Fritsche and Pritt 2017). 
 
Treatment of Cystic Echinococcosis  
 
Surgical treatment is the chief therapeutic method for 
Cystic Echinococcosis, and still, it is the standard gold 
procedure for large hydatid cysts. Despite the progress of 
the surgical technique, secondary Echinococcosis due to 
the leakage of protoscoleces may occur throughout the 
operation. Such re-occurrence was documented in 2-25% 
of patients (Ammann and Eckert 1996; Eriksen and 
Agopian 2017). Also, the potent anaphylactic reaction is 
an additional risk. Consequently, application of some 
protoscolicidal agent is necessary due to cyst fluid 
dissemination risk (Pawlowski 1997). An innovative 
technique that was applied includes Puncture, Aspiration, 
Injection, and Re-aspiration (PAIR). This procedure starts 
with the percutaneous puncture of the cyst under 

ultrasonic guidance, followed by cyst hydatid fluid 
aspiration, injection of protoscolicidal substance (such as 
ethyl alcohol), then re- aspiration of the fluid in the next 
twenty minutes. This method attackes the germinal layer, 
reducing the cyst. Lastly, collapsing and solidifying of the 
hydatid cyst takes nplace (Hemphill et al. 2007; Eriksen 
and Agopian 2017).  
Several experimental studies within animal models have 
established the chemotherapeutics of Echinococcosis. 
Albendazole and mebendazole are proved to possess the 
same efficacy (Walker et al. 2004), with mild adverse 
properties (Table 1). Surgical intervension has some 
limitations, like recurrence of hydatid cysts. Moreover, it 
is not applicable for inactive symptomless and tiny 
hydatid cysts (Brunetti et al. 2010).  
 
Nano-medicine 
 
The word nano is derived from the Greek 
words “Nanos” for "dwarf." It equally indicates one 
billionth part (10-9). 'Nanoparticles' is defined by the 
American Society Testing and Materials as particles with 
a minimum double or extra dimension with a size of 1-100 
nm (Alanazi et al. 2010). Dual alternative styles for 
metallic NPs production include the "bottom-up" way and 
the "top-down" method (Kaushik et al. 2010). These 
techniques create nanomaterials which differ from their 
original material in surface-related characteristics or 
quantum amount (Roduner 2006). Moreover, 
nanotechnology represents an expanding research area 
and a hopeful arena due to its application in diverse 
scientific research disciplines (Dutta et al. 2017).  
Nanomedicine includes biological and non-biological 
medicinal products. Biological nanomedicines are 
prepared from biological sources, whereas non-biological 
ones are called non-biological complex drugs (NBCD), 
and they are manufactured from different synthetic 
structures (Mühlebach 2018). The nanomedical products 
express an extensive variation in their type and structure 
and have been used in many remedies for acute and 
chronic diseases. Also, differences in toxicity, solubility, 
and bioavailability characters are modified by 
nanotechnology in medicine (Soares et al. 2018). 
Disadvantages of nanoparticles include their high cost 
and potential risks for the human body. Consequently, 
biological methods, for instance, utilizing 
microorganisms (Li et al. 2012) and enzymes (Rangnekar 
et al. 2007), are advised as possible eco-friendly choices 
for the purpose. Nanomedicine advantages include high 
bioavailability and stability, diverse administration ways, 
organized release, and negligible toxicity. In contrast, the 
disadvantages consist of ethical worries, their cost-
effectiveness and associated risks (Aditya et al. 2013). In 
their paper concerning nanotechnology and hepatic 
illnesses, Reddy and Couvreur (2011) have pointed out 
that nanomedicines are habitually used phospholipids 
(such as liposomes), polymers, or iron resources (like 
minor Fe O Nanoparticles). In a previous investigation, 
Alving et al. (1978) applied liposomes to increase the 
effectiveness of medications with Leishmania donovani in 
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experimentally infected hamsters. Also, nanobio-
technology is a part of nanotechnology that presents NPs 
production for particular applications with minimum risk 
influences from bio-systems resources. Nanobio-
technology is a wide-ranging term, covering the creation 
and subsequent utilization of particles smaller than 100 
nm size (Ahmad et al. 2003). Various organisms, 
including, plants, algae, filamentous fungi, yeast, bacteria, 
and viruses, could be considered as sources for NPs 
production. Some researchers studied the use of 
microorganisms as potential eco-friendly materials to 
synthesize NPs, for instance, cadmium, gold sulfide and 
silver (Mukherjee et al. 2002; Ahmad et al. 2003). Green 
biosynthesis is recommended now-a-days; it depends on 
plants and their extracts for generating the NPs (Begum 
et al. 2009). Among these, leaves extract of black tea has 
capability to release gold and silver NPs, which is 
attributed to the presence of polyphenols in the black tea 
plant (Begum et al. 2009). Nanoparticles produced by 

plants are more stable, and their synthesis is quicker than 
that of microorganisms. Also, the NPs are more varied in 
shape and size than those created by other organisms 
(Iravani 2011).  
Furthermore, AuNPs synthesized by green vegetative 
were more stable than NPs created by other techniques. 
Plants contain many phytochemical materials, like 
terpenes, polyphenols, carboxyl, hydroxyl, and aldehyde 
functional groups, that can reduce gold salt HAuCl4 to 
AuNPs (Chanda et al. 2011). Their outcomes emphasized 
the ability of non-toxic cinnamon -Au NPs as a signal for 
identifying cancerous cells, which possibly would be 
clinically advantageous for diagnosis of the disease 
(Chanda et al. 2011). 
Bacteria, Actinomycetes, and fungi were examined to 
produce metal NPs (Singh et al. 2016). Enzymes from 
bacteria and phytochemicals of plants with antioxidant 
activities or reducing characteristics are accountable for 
reducing metal materials into NPs (Durán et al. 2011).

 
Table 1: Anti-Echinococcosis drugs with adverse effects. 

Drugs  Adverse effects References 

Benzimidazoles Caused leukopenia, thrombocytopenia, and hepatotoxicity  
contraindicated for pregnant women (teratogenic) 
20-40% of patients failed to respond positively                 

Eriksen and Agopian (2017) 
Moro and Schantz (2009) 

Albendazole It amplified the transaminases.  
20% of cases showed abnormalities in liver function. 
Teratogenicity has been stated when it is given to experimental animals during 
early pregnancy. 
Induce hematuria, leukopenia, and teratogenic in rats. Also, it is not 
recommended for women during pregnancy. 
May leads to embryotoxicity and teratogenic in experimental animals. Therefore, 
it should be avoided during pregnancy and lactation. Also, it is slow. 

Teggi (1995) 
Horton (1997) 
McManus et al. (2003) 
 
Gollackner et al. (2000) 
Perez-Serrano et al. (1994) 
Horton (1989) 
Hemphill et al. (2007 

Mebendazole 
and 
albendazole 

20-40% of hydatidosis doesn't respond to therapy. 
 High cost, lifelong consumption, parasitostatic rather than parasiticidal, high 
recurrence. 
 Lead to hepatotoxicity, severe leukopenia, thrombocytopenia, and alopecia.  
Result in neutropenia, liver toxicity, and alopecia. It is contraindicated during 
pregnancy, chronic hepatic disease, and bone marrow depression were recorded.  
Elevated transaminases, abdominal pain, headache, vertigo, urticaria, and 
jaundice were observed.   

Elissondo et al. (2008)  
Kuster et al. (2014)  
Hemphill et al. (2007) 
Junghanss et al. (2008) 
 
  
Moro and Schantz (2009)  
Aronson (2016) 

 

 
 
Fig. 1: The life cycle of Echinococcus granulosus. 

 
 
Fig. 2: Schematic diagram of Echinococcal cyst structure, 
illustrating the pericyst, exocyst, endocyst, and protoscolices of 
E. granulosus (Eriksen and Agopian 2017). 
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Table 2: Scolicidal efficacy of nanoparticles according to some recently published articles.  

Compound DIsease Experimental 
design 

Dosage Treatment 
period 

Efficacy assessment References 

Selenium N.P.s CE In vitro 500 mg/ml 10 minutes 100% Mahmoudvand et 
al. (2014) 

Silver NPs CE In vitro 0.15 mg/ml 120 minutes 90% Rahimi et al. 
(2015) 

Colloidal silver CE In vitro 4 mg/ml 60 minutes 71.6% Lashkarizadeh et 
al. (2015) 

Gold NPs  CE In vitro 0.3 mg/ml 120 minutes 94% Barabadi et al. 
(2017) 

Solid lipid NPs 
Loaded on 
albendazole sulfoxide 

CE. In vivo  0.5 mg/kg BID 
2 mg/kg 

Every 48 hr 
for 15 days 

Economic & shortening time Ahmadnia et al. 
(2013) 

Chitosan albendazole 
NPs 

  CE In vivo & In 
vitro 

25 mg/ml 21 days Significant effects Torabi et al. (2018) 

Albendazole-chitosan 
microsphere 

Alveolar 
E 

In vivo 150 mg/kg  Efficient Abulaihaiti et al. 
(2015) 

Albendazole 
sulfoxide-loaded 
PLGA-PEG 

CE In vitro 150 & 200 μg/ml 5-60 
minutes 

100% Naseri et al. (2016) 

Albendazole & 
Albendazole 
Sulfoxide-Loaded 
Solid Lipid NPs 

Alveolar 
E 

In vitro 2,000 g/L 
2,500 g/L 

48hr. 
72hr. 

ABZ and ABZSO showed good 
physicochemical properties, 
regular release, higher 
permeability and efficiency by 
loading SLNPs 

Soltani et al. 
(2017) 

ABZ and PZQ loaded 
solid lipid NPs (SLNs) 

CE. In vivo  --------- Three 
months 
treatment 

 Treatment reduced the wet 
weight and size of developed 
cysts for the ABZ and PZQ 
loaded SLNs was 83% and 85%, 
respectively. 

Jelowdar et al. 
(2017) 

 Ag NPs, Fe N.P.s, Cu 
N.P.s, Si N.P.s, and Zn 
N.P.s 

CE In vitro 0.25, 0.5 and 1 
mg/mL 

10-60min Ag NPs showed the highest 
effect, followed by Si NPs, 
CuNPs, Fe NPs, ZnNPs 

Norouzi et al. 
(2020) 

Albendazole on Ag 
NPs, ABZ and Ag NPs  

CE In vivo Mice were given 
ABZ-loaded on 
silver NPs  
orally via a gastric 
tube at a dose of 
100 mg/kg/d 

8 weeks  ABZ-loaded NPs showed high 
drug efficacy in experimentally 
infected mice, with minimum 
histopathological alterations, 

Nassef et al. (2019) 

Chitosan–Curcumin 
Nanoparticles 

CE In vitro 0.25, 0.05, 1, 2, and 
4 mg/mL, 

for 5, 10, 20, 
30, and 60 
min 

Mortality % rate 68% in 
4 mg/mL concentration  

Napooni et al. 
(2019,b) 

Gold NPs CE In vitro 250, 500, 1000, 2000 
and 4000 μg/mL). 

5, 10, 20, 30, 
and 60 min. 

4000 μg/mL of gold NPs killed  
76%of protoscoleces in 60 min 

Napooni et al. 
(2019,a) 

Zinc oxide 
Nanoparticles 
ZnO- N.P.s 

CE In vitro concentration of 
50,100 and 150 
mg/ml 

10, 30 and 60 
minutes 

The mortality percentage of 50 
mg/ml  ZnO NPs is 19.6% of 
protoscolices at 10 minutes. 

Norouzi et al. 
(2019) 

Albendazole-lipid 
nanocapsule 

CE In vivo Dose of 5 mg/kg. Daily for 30 
days by an 
intragastric 
tube. 

ABZ-LNCs exhibited greater 
chemoprophylactic efficiency 
than ABZ administered orally to 
mice. In addition, the treated 
group didn't show any cyst. 

Ullio Gamboa et 
al.  (2019) 

Albendazole sulfoxide 
(ABZ-SO)-loaded 
chitosan-PLGA NPs 

CE In vivo A daily dose of 10 
mg/kg 

45 days the therapeutic influence of 
ABZ-SO-loaded CS-PGLA NPs 
in the weight and volume of 
cysts were statistically 
significant compared with the 
control group 

Darvishi et al. 
(2020) 

Zirconium Oxide 
(ZrO2 ) 

CE In vitro 250, 500, 1000, 
2000, and 4000 μg/ 
ml) 

60 min. 1000, 2000, and 4000 μg/ml 
were significantly effective in 
the killing of protoscoleces. 

Ibrahim (2020) 

TiO2 Nanoparticles 
and Echinometra 
mathaeis gonad 
extracts 

CE In vivo and 
invitro 

15 μg/ml gonad 
extract + TiO2 
Nanoparticles  

60 min. Killed 84% of the treated 
protoscolices 

Navvabi et al. 
(2019) 
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copper NPs (CuNPs) CE In vitro and 
ex vivo 

CuNPs 250, 500, 
and 750 mg/mL 
separately and with 
albendazole of 200 
mg/mL 

5-60 min The mortality proportion of 
protoscoleces was 100 % after 10 
min of incubation with 750 
mg/mL of CuNPs and with 
albendazole  

Ezzatkhah et al. 
(2021) 

Silver Nanoparticles 
Ag NPs 

CE In vitro AgNPs 
0.05,0.1, 
0.2,0.3, 
0.4mg/ml 

From 10-210 
min  

The percentage of mortality was 
100% after 2hr.of incubation 
with AgNPs 0.4 mg/l. The 
effects were dose and time-
dependent 

Jalil et al. (2021) 

 
Nanoparticles are essential for medical uses owing to 
their exceptional characters, for example, large surface to 
mass proportion, their quantum structures, and abilities 
to adsorb and transport other compounds (drugs, probes, 
and protein). 
Presently, metal NPs have broad and diverse applications 
in catalysis, electronics, biosensing, photonics, cosmetics, 
ecological cleanup, photo- imaging, and drug transport 
(Nath et al. 2013; Singh et al. 2016). Studies for developing 
the most effective and biodegradable green techniques for 
metal NPs are in progress. Green production of metal NPs 
possesses many advantages, such as simplicity, cleanness, 
effectiveness, safety, and cheapness. They use biological 
sources (plants, fungi, algae, besides microorganisms) to 
reduce and stabilize function (Mukherjee et al. 2012, 
2014). 
Moreover, NPs are dependable as a medication for the 
treatment of different diseases because of their 
antimicrobial effects. They have been proved to express 
promising activities against bacteria, viruses, and 
parasites (Jebali and Kazemi 2013). 
Presently, metal NPs, mainly AuNPs and AgNPs, are 
applicable in the therapy of many diseases, like 
malignancy, diabetics mellitus, Parkinson's, Alzheimer's, 
HIV/AIDS, arthritis, hepatitis, cirrhosis, spinal cord 
injury, tuberculosis, and cardiovascular illnesses, because 
of their optoelectronic and physicochemical properties 
(Patra et al. 2015). Moreover, Aly et al. (2018) stated that 
silica-coated NPs with polyclonal antibodies improved 
Nano-sandwich ELISA sensitivity and specificity for 
diagnosing Toxoplasma gondii in sera and urine of 
patients owing to their high surface to volume 
proportions and crystallographic surface structure. 
With respect to vaccine production, NPs show many 
advantages in comparison with conventional vaccines and 
adjuvants. They improve the solubility of hydrophobic 
antigens, have fewer adverse effects post-vaccination, give 
a sustainable controlled release of the prepared antigens, 
target the lymph nodes or reticuloendothelial tissues 
directly, and require smaller volumes and fewer doses 
(Dobrovolskaia et al. 2016). Nanovaccines and nano-
adjuvants can be administered separately or collectively in 
a single shot to minimize the required doses. 
Nanovaccines can be given by diverse routes, which offer 
more flexibility, making them ideal for veterinary 
medicine applications, especially if many birds or animals 
need to be vaccinated (El-Sayed and Kamel 2018; Kamel et 
al. 2019). Nanotechnology aids the NPs to target the 
immune system specifically (in vaccine preparation), or to 
avoid its stimulation (in other medical applications) 

(Dobrovolskaia et al. 2016). Nanoparticles can deliver 
different compounds via endocytosis, for instance, drugs, 
chemotherapeutic agents, and imaging substances. Also, 
biological materials like antigens, antibodies, RNA, or 
DNA could be delivered. They can even be depended on to 
deliver light and heat to their target cells when required 
(El-Sayed and Kamel 2020). 
In Nanoparticles toxicity, which was raised from its high 
production and exposure of humans, recent results 
showed that NPs could be accumulated in vital organs 
such as the heart, liver, spleen, kidneys, and brain after 
ingestion or dermal contact. Nevertheless, scarce 
information is known concerning the toxicity 
mechanisms responsible for harmful/toxic effects of 
nanoparticles. In vitro and in vivo investigations pointed 
out that NPs could induce the creation of reactive oxygen 
species (ROS), which is a principal mechanism of their 
toxicity. ROS production leads to oxidative stress, 
inflammation, and subsequent destruction of proteins, 
cell membranes, and DNA. At the same time, ROS 
production induced by NPs is organized by size, shape, 
surface, composition, solubility, aggregation, and the 
route of NPs uptake (Sengul and Asmatulu 2020). 
The Organization for Economic Cooperation and 
Development (OECD 2002) have recommended oral 
toxicity tests, eye irritation, skin toxicity, and lethal Dose 
50 to assess acute in vivo toxicity of nanomaterials. In vivo 
toxicity studies include many parameters like dose, route 
of administration, metabolism, excretion, and immune 
reactions, which are also highlighted. The toxic effects of 
NPs on human health are significantly increasing their 
global recognition. Therefore, the ongoing 
nanotoxicology researches to investigate the biological 
pathways taken by NPs and induced toxic effects have 
increased noticeably during the last few years (Ashajyothi 
and Chandrakanthb 2019). 
The absence of official regulations regarding 
nanomedicines and nanomaterial manufacture for clinical 
applications is considered a global issue (Foulkes et al. 
2020). On the other hand, several nanomaterials and 
nanotechnologies have already been approved and 
organized in the clinical trials for different drugs, like 
antifungals, anticancer drugs, and pain management 
agents (Anselmo and Mitragotri 2019). 
 
Protoscolicidal activity of Nanoparticles 
 
Several researchers studied the protoscolicidal effects of 
biogenic NPs against E. granulosus within in vitro and in 
vivo models. Mahmoudvand et al. (2014) investigated 



 

Veterinary Pathobiology and Public Health  

185 Shnawa1 et al. 

protoscolicidal effects of selenium (Se) NPs, which were 
produced by Bacillus sp. MSh-1. Their results documented 
the potent protoscolicidal activity of different 
concentrations of Se NPs after a short period of 
treatment. Moreover, other researchers recommended Se 
NPs as an innovative therapeutic agent for the treatment 
of cutaneous leishmaniasis localized lesions. They proved 
their effects against both promastigote and amastigote of 
the causative agent (Leishmania major) of the disease 
(Beheshtia et al. 2013). With respect to cytotoxicity of 
selenium NPs, Shakibaie (2013) pointed out that no 
mortality was recorded in mice injected with 2.5, 5.0, and 
10.0 mg kg−1 of biogenic selenium NPs manufactured 
from Bacillus spp. In contrast, animals inoculated with 20 
mg kg−1 of Se NPs expressed 20% deaths, with changes in 
biochemical and hematological parameters. Furthermore, 
the toxicity of biogenic Se NPs was less than that of the 
synthetic Se NPs, which established Bacillus sp's MSh-1 
ability in converting the high poisonous Se compound to 
less poisonous Se NPs (Shakibaie 2013).  
Furthermore, other researchers observed the ability of Se 
NPs in reducing Candida albicans biofilm. It was 
documented that Se could be coated on the surface of 
medical devices, which then would express activity 
against bacteria and fungi (Guisbiers et al. 2017). 
Selenium is a trace element essential for life (adult human 
needs ~40 μg Se/day). However, it is poisonous at high 
levels, from N3200 to 6700 μg Se/day (Navarro-Alarcon 
and Cabrera-Vique 2008). 
Additionally, Rahimi et al. (2015) investigated 
protoscolicidal ability of biosynthesized silver NPs by 
Penicillium aculeatum against Cystic Echinococcosis. The 
findings proved that all concentrations of the AgNPs had 
remarkable protoscolicidal action. These investigators 
decided that AgNPs might be used as probable 
protoscolicidal because of their biodegradable source and 
harmlessness. Moreover, Lashkarizadeh et al. (2015) 
highlighted the protoscolicidal ability of amphotericin B, 
Ag NPs, essential oil of Foeniculum vulgare Mill, and 
hypertonic saline against Cystic Echinococcosis. They 
documented the antiparasitic activity of AgNPs. The 
maximum activity was observed in 4 mg/mL, leading to a 
mortality percentage of 71.6% of protoscoleces after one 
hour of the treatment period.  
Furthermore, Ag NPs could reduce the toxic effects of 
albendazole, the drug of choice for hydatid disease 
treatment. These toxic effects of albendazole may include 
necrosis and degeneration, steatosis, and raised serum 
hepatic enzymes. As a result, coating ABZ on Ag NPs 
could be a promising technique to increase ABZ 
effectiveness against Cystic Echinococcosis (Nassef et al. 
2019). 
Another investigation pointed out that the greenish 
synthesized AuNPs by P. aculeatum displayed activity 
against Cystic Echinococcosis protoscoleces in in vitro 
model. Several concentrations of these AuNPs for 
different incubation times were investigated (Barabadi et 
al. 2017). Their findings represented a novel method in 
applied nanotechnology with promising results in its 
effects against parasites. Also, they recommended AuNPs 

as a probable protoscolicidal agent against E. granulosus. 
They explained these effects by the large surface area to 
volume proportion, which provided it with novel 
mechanical, chemical, electrical, optical, magnetic, 
electro-optical, and magneto-optical properties that are 
missing in their original substance (Barabadi et al. 2017). 
A recent study demonstrated remarkable protoscolicidal 
effects of AuNPs. These gold NPs can be considered as an 
alternative treatment for Cystic Echinococcosis, 
eliminating side effects associated with chemical drugs 
(Napooni et al. 2019a). 
Moreover, albendazole and Praziquantile coated solid 
lipid NPs represent appropriate carriers for these drugs. It 
is more effective than free albendazole and Praziquantile 
for CE's chemoprophylaxis treatment in the mouse 
model. This makes this compound a candidate for further 
investigations involving clinical practice (Jelowdar et al. 
2017). 
In a previous research, albendazole's loaded chitosan 
microspheres (ABZCS-MPs) activity as a novel carrier in 
experimental mice inoculated with E. multilocularis was 
assessed. ABZ-CSMPs showed higher absorption and 
better-quality bioavailability of ABZ in treating this 
infection in experimentally infected murine compared to 
the group given liposome–albendazole and albendazole 
drugs. As a result, ABZ-CS-MPs are considered as 
excellent applicant for treating Alveolar Echinococcosis 
caused by E. multilocularis (Abulaihaiti et al. 2015).  
Another recent study pointed out that chitosan–curcumin 
NPs exhibited scolicidal activities, which suggested them 
as appropriate anti-protoscoleces agents (Napooni et al. 
2019b). According to Torabi et al. (2018),  chitosan 
albendazole (ChABZ) and chitosan praziquantel (ChPZQ) 
nanoparticles are more effective than albendazole and 
praziquantel against hydatid cyst disease in in vitro and in 
vivo models. According to their findings, a significant 
reduction in the number of hydatid cysts was detected in 
the murine group inoculated with ChABZ and ChPZQ 
NPs in therapeutic and chemoprophylactic designs. 
Moreover, these researchers demonstrated that ChPZQ 
NPs were more efficient than ChABZ in destroying the 
micro hydatid cysts. This may be attributed to the ChPZQ 
NPs smaller size and high stability than ChABZ NPs 
(Torabi et al. 2018). 
In a recent in vivo study, Darvishi et al. (2020) 
demonstrated the activity of ABZ-sulfoxide-loaded 
chitosan-PGLA NPs produced by nanoprecipitation. 
According to this study, remarkable therapeutic effects in 
the weight and size of the treated cysts compared to those 
of the control group were observed. They concluded that 
ABZ-sulfoxide-loaded chitosan-PGLA NPs could improve 
the hydatid cyst disease treatment in the murine model. 
Similarly, Ibrahim (2020) investigated several levels of 
ZrO2 NPs against the protoscoleces of E. granulosus. This 
study revealed that 1000, 2000, and 4000 μg/ml of ZrO2 
NPs were significantly efficient in killing the parasite after 
60 minutes of incubation. 
Furthermore, albendazole sulfoxide loaded with solid 
lipid NPs were produced and examined in vivo 
experiments against Echinococcosis (Ahmadnia et al. 
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2013). According to this study, cysts in treated mice were 
reduced in size and weight. Also, the cysts in animals 
treated with albendazole sulfoxide loaded with lipid NPs 
showed intensive ultra-structural changes. These results 
proved the destructive activity of the compound against 
the parasite (Ahmadnia et al. 2013). The microtriches 
structures, functions of which were related to nutrition, 
were shortened or even lost in many treated hydatid 
cysts, suggesting that the E. granulosus reacted to adverse 
environments by reducing the absorption membrane area 
(Ahmadnia et al. 2013). 
Various mechanisms proposed for antiparasitic activity of 
NPs have been highlighted in the literature, including 
apoptosis induction. Naseri et al. (2016) assessed in vitro 
apoptotic activities of albendazole sulfoxide and 
albendazole sulfoxide-loaded poly (lactic-co-glycolic acid) 
(PLGA)-PEG as an innovative nano polymeric particle 
against protoscoleces. They showed that ABZs and ABZs-
loaded PLGA-PEG were able to stimulate cell death of 
protoscoleces with the oligonucleosomal DNA 
fragmentation, which indicates the existence of late 
stages in apoptosis. These apoptotic activities of ABZs on 
protoscoleces were evaluated by caspase-3 mRNA 
expression of the E. granulosus genome. Similarly, it was 
noticed that albendazole and albendazole sulfoxide 
loading solid lipid NPs exhibited good physicochemical 
characteristics and controlled releasing by using solid 
lipid NPs as drug delivery carriers (Soltani et al. 2017). 
These workers proposed that such materials are useful for 
the treatment of Cystic Echinococcosis (Table 2). 
Cystic Echinococcosis (CE) is still a neglected disease, for 
which the approved treatment is the use of 
Benzimidazole. This medication displays a parasitostatic, 
instead of parasiticidal, activity on hydatid cyst disease 
with low bioavailability. Consequently, many trials were 
performed to improve its solubility, absorption, and 
bioavailability. These experiments aimed at boosting the 
drug activity through NPs, resulting in accumulative 
intra-hydatid cystic drug levels (Siles-Lucas et al. 2018). 
Shnawa (2018) also reviewed several published articles 
related to biogenic NPs as potential agents against 
hydatid cyst disease and applied a Nano-carriers 
medication delivery system that hopefully extends the 
treatment options further. 
In contrast, the main concern regarding use of 
nanoparticles is their toxicity; thus, the cytotoxicity issue 
of these nanoparticles should be highlighted. Besides, 
more studies are required to investigate the effects of 
these nanoparticles and their mechanisms of action as a 
treatment option for the CE, particularly in animal 
models and clinical management (Albalawi et al. 2020). 
 
Conclusion 
 
Hydatid cyst disease is a life-threatening zoonotic 
problem that results from the metacestodes of E. 
granulosus infection with limited treatment options. The 
standard treatment for CE is the surgical operation. 
However, one of the major problems following surgery is 
the recurrence of the infection owing to spilage of the 

hydatid fluid. Up to now, no effective drugs and scolicidal 
agents are available. The only synthetic chemical drug 
licensed for human treatment is Benzimidazole, which 
has a therapeutic efficacy of over 50%, underlining the 
need for novel drug delivery systems. Also, this 
medication is known to have a parasitostatic effect 
instead of parasitocidal activity against E. granulosus, 
with limited bioavailability and severe adverse effects. 
Therefore, there is a crucial necessity to progress an 
innovative and efficient anti-hydatid agent.  
Based on the results obtained from several in vitro and in 

vivo studies, NPs could be considered as an up-and-
coming candidate and an alternative CE treatment 

resource. The most of the NPs tested for CE treatment 
were metal NPs, metal oxide NPs, and polymeric NPs. 
NPs are currently receiving much attention in research 

concerning Echinococcosis, but their safety is still 
questionable. 

Consequently, the cytotoxicity of these NPs should be 
highlighted in future investigations. Besides, mechanisms 
of the cellular and molecular action of these NPs against 

hydatid cyst disease need to be explained. These may give 
a new approach in the NPS aspect and perhaps present a 

chance for manipulating a novel and more efficient drug 
for hydatid cyst disease. 
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