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INTRODUCTION 

 
Parasitism is still a serious threat to the livestock 
economy worldwide (Rashid et al. 2019). Gastrointestinal 
(GI) parasitic infections are considered among the major 
threats to livestock production all over the world due to 
retarded growth and productivity, and animal mortality 
(Githiori et al. 2004). A major impediment to maximizing 
production from livestock is the cumulative effects of 
parasitism on animals (Ahmad et al. 2017). GI tract 
parasitic infections of production animals have great 
economic impact, especially in developing countries. 
Helminths, especially GI nematodes and trematodes, 
impose severe threats to livestock in these areas in the 
form of morbidity, mortality, cost of treatment and 
control measures (Lashari and Tasawar 2011). Also, 
helminth infections in ruminants decrease natural 
resistance to diseases, result in poor weight gain and poor 
feed utilization (Pedreira et al. 2006). Apart from the 
importance of nematodes in ruminant populations, 
higher prevalence rates of cestodes and trematodes have 
also been reported (Rizwan et al. 2017; Ikurior et al. 2020). 
In developing countries, antiparasitic drugs are used 
extensively for the control of parasitic infections, 
especially by smallholder farmers. This extensive use may 
lead to the development of resistance. Other factors 
responsible for the development of resistance are poor 
efficacy of antiparasitic agents, inappropriate dose, low 
protein diet and environmental toxicity (Smith and 
Sherman 2009; Khan et al. 2017). Development of 
resistance to antiparasitic agents and their residual effects 
in animal products have stimulated scientists and 
veterinarians to investigate alternative sources to prevent 
and control parasitic infections and to improve public 
health (Qadir et al. 2010; Badar et al. 2017). Keeping in 
view the limitations of chemotherapy, alternative 
solutions, such as biological control of parasites, use of 
vaccines, phytotherapy, use of trace elements (TEs) and 
development of resistant host genotypes, are being 
considered. These strategies, based on the holistic 
approaches, may substitute and/or augment existing 
prevention and control measures for parasitic infections, 

which have special significance in resource-poor 
communities due to their increased availability and 
cheaper prices. 
The availability of trace elements (chemical elements 
required in minute quantities for normal growth of 
animals) in an appropriate quantity is a pre-requisite for 
the health and productivity (milk, meat, eggs, wool, 
hides) of livestock, while their insufficient intake or 
unavailability decreases productivity (Khan et al. 2007). 
Under natural grazing conditions, forages are among the 
major sources trace elements (TEs) for herbivores; 
however, water and soil also contribute to supply 
considerable quantities of TEs. Feed sources of TEs are 
largely separated into a variety of base feedstuffs, like 
harvested forages, concentrates, range or pasture plants, 
and mineral supplements (McDowell and Arthington 
2005). The level of TEs consumption mainly depends 
upon forage intake. Factors responsible for the 
concentration of TEs in grazing forages are: plant species, 
plant developmental stage, dry matter yield, soil type, and 
climatic conditions (Mirzaei 2012). Determination of the 
abundance of TEs in grazing forages and their 
bioavailability to animals is important for meeting the 
requirements of animals (Qudoos et al. 2017; Rizwan et al. 
2019; Ahmad et al. 2020). 
In developing countries, data related on the association of 
TEs in the complex systems represented in the soil-plant-
animal interface are poorly available, except for a few 
recent investigations (Qudoos et al. 2017; Rizwan et al. 
2019; Ahmad et al. 2020). Other than this, a better 
understanding of the association of TEs with the burden 
of parasites in livestock is still needed. In this chapter, the 
role of TEs in animal health through their influence on 
physiological processes, and the development of non-
specific and/or specific immunity against GI parasites, are 
discussed comprehensively. 
 
Strategies to Control Parasites 
 
For the control of parasites in livestock, especially those 
reared by resource-poor farmers, it is important to 
identify the burden and types of parasites along with 
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specific risk factors associated with the parasitic 
infections in the specific area (Ayana and Ifa 2015). 
Breaking the life-cycles of parasites is the main goal in 
attempts to control parasitic infections. The use of 
antiparasitic drugs and appropriate management (of both 
animals and pastures) help to interrupt the life-cycle of 
parasites. The use of antiparasitic drugs for the control of 
parasitic infections is one of the best methods and is 
recommended globally (Grade et al. 2008). The strategic 
application of single or combination of two or more drugs 
for the control of parasites is very effective (Parr and Gray 
2000). Integrated management through the combination 
of chemotherapy and other interventions usually results 
in the best parasite control (Atnafe and Melaku 2012). 
However, the development of resistance to almost all 
antiparasitic drug classes, due to their frequent use over 
the past few decades, has become a problem around the 
globe. In developing countries, most anthelmintics are 
used without registration and proper tests, which directly 
affect their efficacy (Atnafe and Melaku 2012). 
Inadequate use of anthelmintics, poor efficacy of the 
commercially available products, and low protein diets 
result in development of resistance (Smith and Sherman 
2009). Antiparasitic treatment of livestock in most 
countries is not practiced regularly in a systemic way, 
which may have a considerable effect on parasite 
prevalence and leads to resistance. Furthermore, sample 
size and the nature of sample sources (faecal or autopsies) 
are also important points in this regard (Githiori et al. 
2004; Khan et al. 2017a). 
Anthelmintic resistance is widespread, especially in 
nematode populations around the world (Kaplan 2004). 
The development of resistance to antiparasitic drugs and 
entrance of drug residues in the food chain have 
stimulated investigations into alternative ways to control 
parasitic infection and to improve public health. In this 
perspective, the search for alternative and/or augmenting 
tools to enhance antiparasitic activity gains currency. In 
Pakistan, some sheep breeds are resistant to Haemonchus 
(H.) contortus (e.g., native Lohi breed; Saddiqi et al., 
2010). An alternative strategy to control resistance is 
manipulation of positive genetic variation. There are 
three ways through which one can introduce positive 
genetic variation: (a) selection of breeds, (b) cross-
breeding and (c) selection among the breeds (Nicholas 
1987). These methods are sustainable, efficient, safe and 
economical, but the only hindrance is the need of 
expertise in the field of genetics and the time needed to 
develop robust population of parasite-resistant sheep 
with suitable production value (Stear et al. 2007). 
Another option is strategic grazing management, e.g., 
rotational grazing, which embraces stocking density and 
routine moving to clean pastures (Stear et al. 2007). 
Grazing management is related to the ecology of parasite 
larvae, plant species in grazing pasture, epidemiology of 
parasites, climatological status, schedule of using 
antiparasitic drugs and prevailing conditions (Hamad 
2014). Another method to control parasitic infections is 
biological control, including the use of nematophagous 
fungi (e.g., Duddingtonia flagrans), which directly 

decreases the number of infective larvae (L3) in pasture 
(Waller et al. 2004). Addition of fungal spores to feed is 
also an effective method to control worms (Waller and 
Thamsborg 2005). 
Plants have been used from ancient times for treatment of 
domesticated animals and humans. Plants are important 
sources of antibacterial, antiparasitic and insecticidal 
agents. Plants are being studied in different parts of the 
world for their ovicidal, adulticidal and larvicidal 
anthelmintic activities (Githiori et al. 2004; Masood et al. 
2013; Tugume et al. 2016; Kebede et al. 2017). Antiparasitic 
agents extracted from plants have also been used in 
human and animal populations, but compared to 
commercial antiparasitic drugs, their scientific evaluation 
is limited (Masood et al. 2013; Badar et al. 2017). Use of 
botanical de-wormers is a good approach and is a possible 
augmentative solution to combat antiparasitic drug 
resistance (Jabbar et al. 2006). 
 
Malnutrition and Parasitic Infections  
 
Malnutrition and parasitic infections are directly related 
(Hailegebriel 2018). Malnutrition occurs in cases of GI 
parasitic infections due to induction of intestinal bleeding, 
impaired digestion and poor absorption of nutrients (Din 
et al. 2018). These parasites also lead to reduction in feed 
intake, fat absorption, protein usage and loss of nutrients 
in the form of diarrhea (Robertson et al. 1992). Likewise, 
malnutrition adversely affects local and systemic immune 
responses, resulting in increased susceptibility to parasitic 
infections (Koski and Scott 2001; Rajoo et al. 2017). GI 
parasites are one of the major risk factors which 
contribute to malnutrition, reduced performance and poor 
productivity in livestock and poultry (Yun et al. 2000). In 
human populations, malnourished people are primarily at 
risk of getting heavy parasitic infections, and helminthic 
infections with Ascaris lumbricoides, hookworms, 
Trichuris trichiura and Schistosoma mansoni usually cause 
malnutrition in humans (Papier et al. 2014; Mekonnen et 
al. 2014). 
Among environmental factors, nutritional status plays an 
important role in affecting resistance to infection. Protein 
malnutrition in this regard is of prime consideration, as it 
leads to poor immunity and increased parasite burden 
(Clough et al. 2016). The public and veterinary health 
significance of helminth infections are often studied in 
the laboratory with the model roundworm, 
Heligmosomoides (He.) polygyrus in mice (Behnke et al. 
2009). This parasitic infection may result in poor growth 
(Coltherd et al. 2011). The parasite load varies in different 
strains of the mice, representing genetic variation for 
resistance (Reynolds et al. 2012). 
 
Immunity and Gastrointestinal Parasites  
 
The GI tract of animals and humans harbors various 
species of nematodes, as these parasites have adapted 
themselves for nutrient uptake and evasion of local 
immune responses at the intestinal interface of the host. 
These parasites provide a strong challenge to the immune 
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system of the host, leading to repeated exposure to 
infective stages, resulting in high endemicity of the 
parasitic infection (Sorobetea et al. 2018). 
On entering the body of the host, first task for a parasite 
is to take over its immune system to reach its predilection 
site. This process depends upon the exact location and 
type of parasite and involves crossing host tissues, 
membranes and blood or lymphatic barriers. This is 
achieved by the wide variety of proteinases which are 
present in excretory/secretory (ES) products (Tort et al. 
1999). The larval or adult forms produce these 
proteinases, which hydrolyze collagen, fibrinogen and 
hemoglobin. Metalloproteinases, serine, aspartic and 
cysteine proteases have been reported for GI nematodes. 
Most of them are related to zinc metalloproteinases and 
cathepsin B-type cysteine proteinases (Dezfuli et al. 2015). 
Parasites play an important role in the adjustment and 
formation of the immune system in humans and animals. 
Strong mucosal Th2, Th1, and regulatory responses have 
been reported in hookworm infections, resulting in up-
regulation of IL-15 and a complex, ALDH1A2. The juvenile 
stages of parasites in most helminth infections cause 
robust Th2 immune responses in their mammalian hosts. 
Fasciola (F.) hepatica (liver fluke) colonizes ruminants 
and can down-regulate the Th1 immune responses in 
mice, even in strains that are unable to produce IL-4 
(O'Neill et al. 2000). This indicates that Th2 cells or 
cytokines are not the only factors to act against 
helminths, and the wide spectrum of proteins such as ES 
components are produced by these parasites, which assist 
them to evade host immune responses, including IFNγ 
production, invasion of tissue and feeding (Lucena et al. 
2017). Infection with trematodes, like F. hepatica and/or 
Dicrocoelium dendtriticum in ewes, can lead to the 
development of mastitis after parturition. It has also been 
observed that ewes suffering from pregnancy toxemia are 
presented with increased β-hydroxybutyrate 
concentrations when infected with trematodes 
(Mavrogianni et al. 2014). 
Deficiency of certain minerals in animals can be identified 
by alterations in metabolic activity (like enhanced cell 
proliferation) and alterations in rapidly growing tissues, 
which are badly affected due to mineral deficiency 
(Guthrie 1986). Mineral deficiency also has a profound 
effect on cells having shorter half-life and should be 
replaced frequently, such as lymphocytes. The intestinal 
immune responses induced by GI parasites are both 
physiologically complex and redundant in nature 
(McClure 2000). Mucous secretions, smooth muscle, 
nervous system and epithelium are the local protective 
barrier, in addition to innate and acquired immune 
systems. Among these, the mucosal immune system is 
substantial and more active metabolically; it is more 
profoundly affected due to mineral imbalance. Mucosal 
immune responses are acquired at the cost of higher 
requirements of nutrients; protein loss and malabsorption 
of nutrients may be enhanced due to disturbances in the 
integrity of GI tract due to worm infection (Humphrey et 
al. 2002). Therefore, trace minerals are essentially 
required for metabolic pathways involved in intestinal 

immunity (McClure 2008). 
 
Role of Trace Elements in Animal Health 
 
Even though animals require only very small amounts of 
TEs to maintain homeostasis, deficiencies of these 
elements may lead to deformities of the skeletal system, 
decreased growth rate, and immunodeficiency. Trace 
elements have been used as an immune-potentiating tool 
(to enhance the immune profile) of humans and animals 
all over the world. There are about 52 TEs required in 
animals; among these, 16 are categorized as macro {i.e. 
phosphorus (P), calcium (Ca), chlorine (Cl), sulfur (S), 
sodium (Na), magnesium (Mg), and potassium (K)} or 
micro minerals {i.e., zinc (Zn), cobalt (Co), manganese 
(Mn) selenium (Se), iron (Fe), copper (Cu), molybdenum 
(Mo), fluorine (F) and cadmium (Cd)}. These TEs are 
considered essential for the proper functioning of various 
physiological systems of the body. The possible functions 
and general mechanism of TEs to maintain the health of 
animals are shown in Fig. 1. Other TEs are also necessary, 
but are under less consideration because their excess and 
deficiency mostly do not show severe clinical signs 
(Spears 1999; McDowell 2003; McClure 2008). Following 
are some of the TEs that are essential for development of 
immunity in humans and animals: Na, Mg, S, K, P, Fe, Ca, 
Zn, Se and Mo (McClure 2008; Arthington and Havenga 
2012). Table 1 summarizes the physiological and 
immunomodulating roles of some selected TEs in 
animals.  
Imbalance in TEs ratio in feed is the main issue affecting 
livestock populations, mostly in grazing animals 
(Samanta and Samanta 2002). Deficiency of TEs is among 
the major causes of reduced and low-quality meat 
production, poor quality wool, poor quality hair and 
death of animals around the world (Grace and Knowles 
2012). Minor TEs deficiency does not cause evidently 
harmful effects, and remains undetectable; however, clear 
signs and symptoms can be observed in severe deficiency. 
Deficiency may thus lead to severe diseases in animals 
(e.g., Cu deficiency causes swayback disease, deficiency of 
Mg causes grass tetany and that of Ca causes rumen stasis, 
blindness, and death; Suttle 2010). A high rate of mortality 
has been reported in animals reared in mineral deficient 
areas (Soetan et al. 2010). Skeletal disorders may not be 
directly related to Ca deficiency, but may also be 
attributable to an imbalance in the proportion of Ca and P 
in the diet (McClure 2008). In most cases, excess of one TE 
decreases bioavailability of another (e.g., Mg deficiency 
may be due to excess K (McClure 2008), and excess of Fe 
and Mo decreases absorption of Cu (Keen et al. 2003)). 
The mechanism of reducing resistance against diseases 
due to TE deficiency is shown in Fig. 2. 
TE deficiency causes severe losses to the livestock industry 
to an extent similar to those caused by infections. These 
possess a special enzyme system that on activation helps 
to develop resistance against diseases (Suttle and Jones 
1989; McClure 2003). Zn, Cu, Co, Fe, I, Mn, and Se are 
important for normal immune function (Radostits et al. 
2007). These minerals play a role in: (a) defense against 
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oxidative damage to tissues, (b) reduction of inflammatory 
reactions and (c) association with antioxidant enzymes 
(McClure 2008). Uncontrolled oxidation results in a 
weakened immune system in animals (Arthington and 
Havenga 2012). Trace elements can act as cofactors for 

certain enzymes (Hussein and Staufenbiel 2012), which act 
as antioxidants and are vital for maintaining livestock 
immunity (Gressley 2009). The list of TEs that act as 
cofactors and components of various enzymes is given in 
Fig. 3. 

 
Table 1: Physiological and immunomodulatory roles of selected trace elements in animals 

Sr. 
No. 

Trace 
Element 

Physiological role Immunomodulatory role Reference 

1.  Sodium absorption of different nutrients; increase appetite of 
animals; transmission of pulse; response to stimuli 
and peristalsis of gut 

enhance production of granulocyte–
macrophage colony‐stimulating factor 
(GM‐CSF), tumour necrosis factor‐α 
(TNF‐α) and enhances immunity. 

McDowell, 2003; 
Wu et al., 2013 

2.  Magnesium production of vitamin B6; takes part in oxidative 
phosphorylation, and metabolism of lipids, 
carbohydrates, and protein 

combines lymphocytes to target cells; 
provides energy to the cell for normal 
functioning and development of 
immunity. 

Keen et al., 2003; 
Fekete and 
Kellems, 2007 

3.  Phosphorus component of protein (phosphoprotein), sugar 
phosphates, ATP and some enzymes; formation of 
microbial proteins in the rumen & increased appetite 

maintaining the immune response and 
provide energy to the cell. 

Keen et al., 2003 

4.  Sulfur present in amino acids, enzymes, hormones (insulin 
and corticosteroid) and vitamins (biotin and thiamin). 

plays a role in replication, transcription, 
translation, antioxidant defense and 
immunity; maintains the mucosa of the 
intestine and controls inflammation. 

Grimble, 2001 

5.  Potassium production of enzymes; nerve transmission and 
response to stimuli 

modulation of macrophage physiology McDowell, 2003; 
Villalonga et al., 
2010 

6.  Calcium necessary for integrity of tissues and helps in muscle 
contraction 

stimulates production of immune cells 
and provides energy for normal cell 
functioning and controls peristaltic 
movements 

Fekete and 
Kellems, 2007 

7.  Vanadium used in protein, lipid and carbohydrate metabolism; 
controlling glucose level in the body  

stimulates immune responses and 
enhances immunity by providing energy 
to the cells of the immune system 

McDowell, 2003 

8.  Manganese part of many metalloenzymes and enzymes like 
kinases, hydrolases, transferases, and decarboxylases; 
neurotransmission, metabolism of lipids and 
carbohydrates 

activation of inflammatory cells, i.e., 
neutrophils and macrophages 

McDowell, 2003; 
Zhu and Richards, 
2017 

9.  Iron cofactor of many enzymes; transportation of oxygen 
and carbon dioxide 

activates the propagation of T and B 
cells, antibodies and compensates the 
amount of Fe in case of blood loss after 
worm infestation 

Keen et al., 2003; 
Cassat and Skaar, 
2013 

10.  Cobalt preparation of cyanocobalamin, methylcobalamin enhanced anti-inflammatory properties Nagabhushana et 
al., 2008 

11.  Copper formation of cytochrome C oxidase, ATP and 
monoamine oxidase; regulation of adrenal functions 
in neurotransmission and acts as an antioxidant; 
maintain the function of the body e.g. as cofactor, 
metalloprotein, and metalloenzymes. 

epithelium repair, energy provision to 
cells, T cells and antibody formation, 

Keen et al., 2003; 
Fekete and 
Kellems, 2007 

12.  Zinc part of many metalloenzymes and also regulates their 
functions; used in Vitamin A metabolism, replication, 
and transcription; increases appetite and plays a role 
in fetal growth 

acts as an antioxidant and stimulator of 
thymulin; increases production of 
lymphocytes, provides energy for cell 
functioning and transcribes immune cells 

Park et al., 2004 

13.  Selenium part of enzymes (glutathione peroxidase) and proteins; 
regulates reactions, energy and arachidonate 
metabolism; helps in cell integrity, brain functions and 
endocrine maintenance 

limits tissue damage due to oxidation, 
controls immune response and 
inflammation 

Hoffmann and 
Berry, 2008; 
McClure, 2008; 
Hefnawy and 
Tortora-perez, 
2010 

14.  Molybdenum present in enzymes like xanthine oxidase, sulfite 
oxidase, and aldehyde oxidase; role in purine 
nucleotides, vitamin B6 functioning, and metabolism 
of lipids and carbohydrates 

multiplication of immune cells and 
inhibition of anti-inflammatory 
mechanisms 

Johnson et al., 
1974 

15.  Iodine production of thyroid hormone in the form of thyroxin; 
starts ATP production and regulates oxidation rate and 
protein formation 

cell growth and control of immune 
responses 

McDowell, 2003; 
McClure, 2008 
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Role of Trace Elements against Gastrointestinal 
Parasites 
 
Although some TEs are required in small amounts, their 
deficiency may cause problems, such as decreased 
resistance against bacterial and parasitic infections, 
decreased immunity, placenta retention, abortion, 
reduced growth and development (Suttle 2010). Limited 
information is available regarding any possible 
association between TE deficiency and GI parasitic 
infections in livestock. In the abomasum, parasites 
present in the growing stages can affect P and Ca 
absorption, resulting in skeletal defects. Sheep infected 
with larvae of Ostertagia circumcincta showed a 
deficiency of Ca and P, but in the case of Trichostrongylus 
colubriformis infected sheep, along with Ca and P 
deficiency, inhibition of skeletal development was also 
recorded (Fekete and Kellems 2007). Low levels of Co, Zn, 
and Fe in sheep infected with Fascioliasis have been 
observed (El-Sangary 1999). Rams infected with H. 
contortus showed a significant effect on the mean levels 
of Zn, Co, Se and Cu (Kozat et al. 2007). It has been stated 
that TEs may be used for effective and quick cure against 
GI parasitic infection. Administration of Cu, Se and 
vitamin E in sheep showed a significant  increase in 
immunity against H. contortus (Camargo et al. 2010; Soli 
et al. 2010). The roles of some essential TEs for the 
development of immunity and their effects against GI 
parasites are discussed below: 
 
Copper 
 
Copper plays an important role in the maintenance of 
various biological processes, such as antioxidant 
protection mechanisms due to Cu/Zn superoxide 
dismutase (CuZnSOD) activity, Fe homeostasis, and 
energy metabolism (Whittaker 2010). Due to the role of 
Cu in oxidation mechanisms, its proper level is necessary 
for the appropriate function of defense against oxidative 
stress and infectious diseases (Huang et al. 2012).  
Copper deficiency in animals may cause symptoms 
related to the immune system (Suttle and Jones 1989). 
Most prominent symptoms reported in Cu-deficient 
animals are: decreased T and B cell mitogens on splenic 
lymphocytes, decreased T cell numbers (most 
importantly T-helper cells), decreased response to 
antibodies, and increased susceptibility to infections, 
ataxia, growth reduction, diarrhea, anemia, abnormal 
pigmentation, decreased reproductive performance and 
increase in bone disorders (Suttle and Jones 1989). 
The mode of action of Cu against GI parasites is not clear. 
It may act as an intraluminal anthelmintic or affect host 
immune response as a nutritional supplement (Langlands 
et al. 1989). The role of Cu in GI parasitic infections, 
especially in nematode infections, has been widely 
explored in animals (Frandsen 1982). Different methods 
were used to establish the Cu requirement to reduce GI 
nematode burdens in dairy animals infected with 
Haemonchus sp. (Chartier et al. 2000). Copper 
supplementation  is  reported   to   cause   a   reduction  in 

 
 
Figure 1: Possible functions and general mechanisms of trace 
elements in maintaining the health of animals. 
 

 
 
Figure 2: Showing how deficiency of trace elements impairs 
disease resistance. 
 

 
 
Figure 3: The list of trace elements which act as cofactors and 
components of enzymes in physiological processes. 
 
abomasal nematodes (Burke and Miller 2006). Hucker 
and Yong (1986) noted higher worm burden and fecal 
eggs per gram (EPG) in Cu-deficient sheep compared to 
those with normal Cu levels. Animals with ostertagiasis 
showed a reduction in blood Cu level, probably because 
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of interferencewith Cu metabolism due to increased pH 
of the abomasal and duodenal digesta (Bank et al. 1990). 
The effectiveness of oral Cu supplementation is related to 
a high concentration of soluble Cu in abomasal digesta. In 
case of nematode infections, reduction in blood Cu 
concentration is reported (Poppi et al. 1990). Cu 
availability is reduced in helminth-infected animals and 
the magnitude of effects is not related to the dietary Cu 
level. Animals with low Cu levels exposed to infective 
larvae of Trichostrongylus (T.) axei and T. colubriformis 
showed decreased ceruloplasmin activities, with 
decreased Cu levels in the plasma and liver.  
The use of copper oxide wire particles (COWP) results in 
a significant reduction of H. contortus worm load (Vatta 
et al. 2009). Experimental infection trials also showed the 
persistent efficacy of COWP against H. contortus 
(Chartier et al. 2000); however, observations of Burke et 
al. (2007) and Vatta et al. (2009) showed a non-persistent 
effect of COWP. Oral administration of COWP to animals 
had a direct effect on parasites and resulted in lower EPG 
and worm burden in livestock (Soli et al. 2010). The effect 
of Cu level on the immune system and health of animals 
is shown in Fig. 4. 
 
Selenium 
 
Selenium is a vital element and plays an important role in 
increasing immune competence of the host by 
neutralizing oxidation reactions (Hoffmann and Berry 
2008). Selenium-deficient diets decreased resistance to 
parasitic infection. Utilization of Se may provide effective 
antioxidant protection against the oxidative stress 
experienced during H. contortus infection (Burke and 
Miller 2008). Subclinical deficiency of Se results in 
reduced production and immunosuppression in animals 
(Hefnawy and Tortora-Perez 2010). In the case of parasitic 
infections, the host responds to the parasite by generating 
reactive oxygen species (hydroxyl radical, hydrogen 
peroxide, superoxide anion radical,  peroxynitrite  and  
nitric  oxide)  that damage the parasites but also enhances 
oxidative stress for the host (Sorg 2004; Rosenfeldt et al. 
2013). Phagocytes, such as eosinophils, macrophages, and 
neutrophils, are responsible for the production of these 
reactive oxygen species, which may cause severe damage 
to the host through immunosuppression (Kotze 2003). 
Neutralization of reactive species can occur by 
antioxidant defense systems, consisting of enzymatic (i.e., 
glutathione peroxidase,GPx), glutathione reductase, 
catalase (CAT), superoxide dismutase (SOD)) and non-
enzymatic defenses such as reduced vitamins A, C and E 
and glutathione (Sorg 2004; Rosenfeldt et al. 2013). 
GPx is involved in a chain of reactions catalyzing the 
formation of thromboxanes, prostacyclins, 
prostaglandins, and leukotrienes (Leal et al. 2010; 
Rosenfeldt et al. 2013). Selenium is a component of GPx 
and there is a strong association between the level of Se 
and enzyme activity. Deficiency of Se results in lower 
amounts of functional GPx, which may lead to severe 
cellular damage due to changes in the structure of 
proteins,  polysaccharides,  DNA and lipids (Hefnawy and  

 
 
Figure 4: Effect of copper level on immune system and health of 
animals. 
 

 
 
Figure 5: Effect of selenium level on immune system and health 
of animals. 

 
Tórtora-Pérez 2010; Ferguson et al. 2012). Therefore, Se 
can be seen to be directly involved in proper working of 
the immune system, regulating phagocyte function, cell-
mediated and humoral immune responses, and induction 
of pro-inflammatory cells that reduce oxidative cell 
production (McClure 2008; Leal et al. 2010). 
Increased expression of TLR-4, L-selectin, selenocysteine-
containing selenoproteins glutathione peroxidase-4 and 
IL-8R in animal neutrophils is related to supranutritional 
supplementation with Se-yeast. These genes are involved 
in the response against parasites and bacteria. Increased 
expression of the selenocysteine-containing 
selenoproteins GPx-4 leads to the lipid hydroperoxide 
free radicals detoxification in the intestinal mucosa 
(Speckmann et al. 2014). Deficiency of Se in He. 
polygyrus-infected mice led to an increase in adult worm 
numbers, parasitic egg production and fecal egg count 
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(Smith et al. 2005). Barium selenite injections in weaned 
Se-deficient lambs reduced fecal egg count and increased 
body weight (Celi et al. 2010), while use of intraruminal Se 
pellets in animals infected with O. circumcincta and T. 
colubriformis did not reduce worm counts or fecal egg 
counts (McDonald et al. 1989). According to Camargo et 
al. (2010), Se stimulates immunity of animals infected 
with H. contortus, resulting in a reduced number of 
parasites. The combination of Se and Cu had a significant 
effect on parasitic burden in terms of reduction in EPG 
and worm load in sheep infected with H. contortus (Silva 
et al. 2013). Celi et al. (2010) documented that the Se 
status of sheep has a vital role in resistance against 
parasitic infection. The Se supra-nutritional availability 
effects H. contortus infection and Se-yeast supra-
nutritional supply helps to control the severity of 
infection (Hooper et al. 2014). A comprehensive outline of 
the effect of selenium level on the immune system and 
health of animals is shown in Fig. 5. 
 
Molybdenum 
 
The optimal range of Mo in feedstuff is 6-10 mg kg-1 dry 
matter, when the level of Cu is marginal, and this range is 
inconsistent with the maximal permissible concentration. 
Mo acts both as an essential nutrient and an immunity 
modulator, especially for mucosal immunity (Blood and 
Radostits 1989). Molybdenum is also vital for boosting the 
immune system and its deficiency predisposes an animal 
to primary and secondary infections. This element is 
necessary for the development of immune responses and 
normal functioning of the rumen microbial fauna, thus 
indirectly improving host nutrition (Ellis et al. 1958). 
A low level of Mo in diets can reduce the ability of 
animals to reject challenges with H. contortus and T. 
colubriformis (Suttle et al. 1992; McClure et al. 1999). An 
optimum intake of about 4–8 mg/animal/day of Mo was 
found to be the greatest defense against parasites, as this 
level was linked to an increase in parasite-specific 
immune responses, i.e., jejunal mast cell numbers and 
antibody levels, proliferation of worm-specific   
lymphocytes, globule leucocyte numbers and eosinophil 
count.  
Mo also plays a role in enhancing protection against 
inflammatory responses in nematodes, which is achieved 
through increased concentration of superoxide radicals in 
the mucosa, hence reducing the effectiveness of Cu-
dependent inflammatory responses and the function of 
Mo as a co-factor for xanthine oxidation (Suttle et al. 
1992). A similar mechanism is likely to be present in T. 
colubriformis rejection (Bendixsen et al. 1995). Another 
possibility is that the involvement of Mo in pyridoxal 
oxidase action mediated rejection of the parasites (Lee et 
al. 2002). Supplementation of Mo results in 78% 
reduction of H. contortus (Suttle et al. 1992) and 23% of T. 
vitrines (Suttle et al. 1992a). A low level of Mo in the diet 
reduces the ability of sheep to reject infection of 
Trichostrongylus sp. (McClure et al. 1999). Effects of Mo 
level on the immune system and health of animals are 
shown in Fig. 6. 

 
 
Figure 6: Effects of molybdenum levels on the immune system 
and health of animals. 
 

 
 
Figure 7: Effect of iron level on the immune system and health 
of animals. 

 
Iron 
 
Animals and humans are required to maintain optimum 
Fe concentration and Fe homeostasis based on its toxicity 
(Zhang et al. 2009). This mineral is a part of proteins, a 
cofactor for enzymes, iron-chelating proteins, and the 
heme group in hemoglobin and other hemoproteins 
(Dunn et al. 2007). Immunological processes in the host 
are regulated by minerals such as Fe, P, Co, and Zn, to 
make the immune system more responsive against 
parasites (Hughes and Kelly 2006). 
Parasites need Fe to survive and reproduce and to 
produce disease in the body of vertebrate hosts, e.g., 
schistosomes (Jones et al. 2007). To cope with this 
situation, mammals have adapted themselves against 
these pathogens by activating iron-sequestering systems 
which minimize the concentration of free Fe in the body. 
Thus, lactoferrin and transferrin, Fe chelating proteins, 
lower the Fe concentration to levels below those needed 
for the parasite to survive (Nairz et al. 2010). 
Furthermore, infections are linked with hypoferremia, a 
host response in which free Fe in body fluids is reduced. 
Therefore, parasites have developed strategies to capture 
the Fe retained in proteins as in lactoferrin. In this way, 
lactoferrin acts as microbiostatic. In addition, Fe can also 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793100/#CR15
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disturb the functional integrity of the parasite surface of 
Giardia, Toxoplasma and Entamoeba, thereby acting as a 
parasiticide (Ordaz-Pichardo et al. 2013).  
Anemia due to Fe deficiency results in G. intestinalis and 
other protozoal infections due to destruction of intestinal 
mucosa, leading to malabsorption of micronutrients like 
Fe. Gastrointestinal parasitic infections can also lead to Fe 
deficiency and anemia (Le et al. 2007). Fe-deficiency 
anemia in helminth infections is attributable to 
malabsorption of Fe from intestine and direct feeding on 
blood, hindering Fe metabolism (Adebara et al. 2011). Fe 
and vitamin B12 have positive relation with respect to the 
host and its parasite (Marcelo et al. 2007). Effects of Fe 
levels on the immune system and health of animals are 
shown in Fig. 7. 
 
Zinc 
 
Zn plays an important role in minimizing pathogenesis by 
up-regulating the immune system through activating 
defensive mechanisms (Hughes and Kelly 2006; Ahmad et 
al. 2020). It is an essential element in cell-mediated 
cytotoxicity, T- and B-helper cell function, and other 
immune responses that enhance the efficiency of gut 
epithelial barriers and hence intestinal immunity against 
GI parasites, specifically nematodes. Zn deficiency can 
lead to down-regulation of these immune responses, 
resulting in increased susceptibility of animals to 
parasites (Scott and Koski 2000; Hughes and Kelly 2006). 
Zn is also necessary for the immune system and can 
reduce parasite numbers (Bundy and Golden 1987).  
It has been reported for mouse models that parasites can 
better evade immune responses in Zn-deficient hosts than 
in healthy mice because IL4 production is suppressed in 
the spleen of the former, leading to lowered titers of IgE, 
IgG1, and eosinophils, as well as poor performance of 
APCs and T-cells (Scott and Koski 2000). Zinc 
supplementation can prevent lambs from infection with 
H. contortus by disturbing its life-cycle and causing 
oxidative stress. Zn has also been proposed to possess 
anthelmintic activity against nematodes (Váradyová et al. 
2018; Rizwan et al. 2019). 
Studies of the effect of Zn on intestinal nematodes in 
animals in laboratory setting have shown variable results. 
Rats given feed deficient in Zn at 3 mg kg-1 showed higher 
Trichinella (Tr.) spiralis burden for longer periods of time 
than those in the control group (Fenwick et al. 1990). 
Similar results were reported in Zn-deficient rats infected 
with He. polygyrus and Strongyloides ratti fed on the Zn-
deficient diet with Zn concentration of 3 mg kg-1 (Fenwick 
et al. 1990a). On the contrary, mice fed Zn at 5 mg kg-1 
efficiently controlled H. polygyrus infection. Although Zn 
at 3 mg kg-1 increased survivability of the above-
mentioned helminths, Nippostrongylus brasiliensis 
remained unaffected in mice at this concentration 
(Minkus et al. 1992). However, H. polygyrus survival was 
enhanced in mice fed Zn in diet at 0.75 mg/kg. It 
indicates that Zn has a role in intestinal immunity against 
helminths in laboratory animals. Zinc also has been 
reported  to  play  an  important  role  in  the activation of  

 
 
Figure 8: Effect of zinc level on the immune system and health 
of animals 
 

 
 
Figure 9: Effect of cobalt level on the immune system and 
health of animals 

 
humoral immune response in mice infected with Giardia 
(Astiazarán-García et al. 2015). 
A reduced level of serum Zn was observed in animals 
infected with GI parasites. Animals infected with T. 
colubriformis showed 17% Zn reduction in serum (Symons 
1983). Zinc supplementation resulted in a reduction of the 
worm burden of S. mansoni in hamsters (Mansour et al. 
1983). Severe deficiency of Zn resulted in increased worm 
burden of Tr. spiralis (Fenwick et al. 1990). This element 
laos has a positive impact on the immune system against 
GI parasites in livestock and laboratory animals (Koski 
and Scott 2001). Effects of Zn level on the immune system 
and health of animals are shown in Fig. 8. 
 
Cobalt 
 
Cobalt (Co) is an important TE in the diet of ruminants, 
as it is required for vitamin B12 synthesis (National 
Academies of Sciences, Engineering, and Medicine 2016; 
Qudoos et al. 2017). Methylmalonyl-CoA mutase and 5-
methyltetrahydrofolate homocysteine-methyltransferase 
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are the two main enzymes which are dependent on 
vitamin B12 and play a major role in the formation of 
methionine and tetrahydrofolate (National Academies of 
Sciences, Engineering, and Medicine 2016). However, 
their relation to parasitic infection is not fully 
understood. Deficiency of Co results in a reduction of 
resistance against parasitic infections. Cobalt can help 
control parasitic infections, as cattle suffering from Co-
deficiency are more prone to GI parasite infections (Silva 
et al. 2020). In a trial, lower cell-mediated responses to 
vaccination and higher EPG of nematodes were observed 
in animals fed low level of Co in the diet as compared to 
those having sufficient Co supplementation (Vellema et 
al. 1996). Effects of Co levels on the immune system and 
health of animals is shown in Fig. 9. 
 
Molybdenum 
 
The role of Mo in immunity is well-known and results in 
decreased H. contortus burden (McClure 2003). 
Parenteral administration of Mo results in worm rejection 
by the involvement of immune cells (Miller 1984).  
 
Manganese 
 
The relationship of Mn with parasitic infections in 
livestock is not well explored; however, excess Mn 
showed an increase in worm burdens in Ascaridia galli-
infected chicks (Gabrashanska et al. 1999). 
 
Conclusion 
 
For the physiological functioning of the immune system, 
several micro and macro TEs are required. Essential TEs 
are important for cell metabolism and the immune 
system. Adequate levels of TEs, such as selenium, 
molybdenum, copper, iron, zinc and cobalt have 
significant effects on animal health through reduced GI 
parasitic infection. Other TEs are either directly or 
indirectly involved via physiological pathways that 
regulate mucosal immunity. The likelihood that minerals 
can affect gut immune responses of livestock against 
endoparasites can be predicted through implications 
generated in epidemiological and experimental studies in 
ruminants and monogastric species. Research is still 
needed to determine the effects of these minerals on 
mucosal immunity and determination of pathogenesis 
and control measures of already identified minerals and 
potentially involved minerals in humans and livestock 
species. Understanding immunity and nutrition is 
necessary for prevention of diseases. A systematic 
veterinary research approach is required to investigate 
the principles of mammalian resistance to gut diseases 
through epidemiological and clinical observation, 
followed by confirmation through experiments and 
elucidation of pathogenesis. This will allow the 
formulation of basic principles regarding physiological 
status and gut diseases across mammalian species. 
It has been reported that deficiency of TEs in animals is 
directly associated with depressed immune system. 

Nutrition has the potential to affect GI parasites because 
it directly affects the degree of expression of the 
immunity and rate of acquisition of the infection, which 
can reduce the survival, fecundity, and establishment of 
GI parasites. A gap between TE deficiencies and parasitic 
infections in animals is reviewed in this chapter, which 
confirms the requirement for further research to explain 
their possible role against GI parasites. Due to sub-clinical 
deficiencies of TEs, animals use feed less efficiently, 
which may lead to a decrease in growth rate, low 
reproductive performance, and immunodeficiency. 
However, acute deficiencies of TEs cause huge economic 
losses in the sense of mortality. Therefore, it is important 
to identify TE-enriched pasture and soil to improve the 
immunity in animals. 
Animals having inadequate supplies of nutrients are more 
prone to GI parasitic infections, which reduce their 
productivity. To determine the sufficient amount of TEs 
for animals, appropriate analyses of soil, forages, and 
animals are essential. Nutrition of animals depends upon 
soil-plant-animal complex, although season can strongly 
influence the dietary requirements for TEs. Deficiencies 
of TEs in soil and forages affect animal production 
adversely. Analysis of a particular area is imperative to 
assess its TE profile and to compare their availability for 
grazing animals. 
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