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INTRODUCTION 

 

Regenerative medicine is a relatively new field in biology that 

deals with the repair and regeneration of diseased and damaged 

tissue, as well as to rectify the congenital anomalies. Over time, 

regenerative medicine has gained much importance because of 

its promising results and wide-ranging applications. Among the 

various options for regenerative medicine, stem cells are at the 

forefront and are comprehensively studied. These cells can 

repair injured tissue, that the body would otherwise be unable 

to regenerate. Although regenerative medicine techniques and 

stem cells have been previously used, however, the concept of 

stem cell therapy was first coined by Caplan (1991). In his 

series of studies on stem cells, he suggested isolation and 

culturing of the stem cells in vivo and in vitro setup. Research 

has shown that there are many types of stem cells, including 

embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) 

and induced pluripotent stem cells (iPSCs) (Gazit et al. 2019). 

Amongst, MSCs have been the most studied and used in 

preclinical and clinical trials because of their invaluable 

properties such as easy availability, simple culturing techniques 

and less or no ethical concerns. In addition to their 

regenerative potential, MSCs can also modulate the recipient’s 

immune system and thus are gaining much recognition and 

scope in veterinary medicine (Kolios and Moodley 2013). The 

poor response or unavailability of conventional treatment 

regimens has shifted the focus of researchers on the use of 

MSCs in veterinary medicine. MSCs offer potential treatments 

for many animal diseases including orthopedic, reproductive, 

dermal, hepato-renal, digestive, cardiovascular, neuromuscular, 

dental, and respiratory systems. Although, since long, the 

scientists have been understanding the nature and behavior of 

MSCs, but still there is a lot to comprehend. This chapter aims 

to highlight the current status of stem cell applications in 

regenerative biology in preclinical and clinical trials. 

 

Stem Cells Origin and Types 

 

Stem cells have been defined and redefined many times, 

however, scientists agree on their undifferentiated nature, self-

renewal ability, and plasticity to differentiate into various types 

of mature cells (Morrison et al. 1997). Depending on the 

source of stem cells, they can be broadly classified as 

embryonic stem cells (ESCs), adult stem cells (ASCs) and 

induced pluripotent stem cells (iPSCs) (Evans and Kaufman 

1981; Takahashi and Yamanaka 2006). The ESCs are obtained 

from early blastomeres before they lose their totipotency. 

From adult individuals, ASCs are traditionally obtained from 

bone marrow and adipose tissue. From fetal adnexa, stem cells 

are routinely retrieved from the amniotic fluid, however, 

amniotic membrane, Wharton’s jelly, cord blood, placenta and 

other tissues are also rich sources of ASCs (Sarfraz et al. 2021). 

The discovery of iPSCs is relatively a new addition in stem cell 

class, obtained by dedifferentiation of adult cells (Takahashi and 

Yamanaka 2006). 

Depending upon their degree of differentiation potential, stem 

cells are classified as totipotent, pluripotent and multipotent 

stem cells (Wagers and Weissman 2004). Totipotent stem cells 

exist only in very early embryonic stages, just before 

gastrulation, and are able to give rise to a variety of adult body 

tissues. Furthermore, they are also capable of developing extra-

embryonic structures (Evans and Kaufman 1981; Martin 1981). 

After gastrulation, these cells yield pluripotent stem cells which 

are proposed to form all types of adult cells except extra-

embryonic tissues. The cells produced by successive cell 

divisions of embryo, having even less differentiation potential 

than that of pluripotent stem cells are termed as multipotent 

stem cells. They can differentiate into number of cell types, but 

their differentiation ability is limited. Other types of stem cells 

are oligopotent and unipotent stem cells, which can deliver 

cells of their own lineage only (Thomson and Marshall 1998). 

Human ESCs were first reported in 1998, which opened new 

horizons for gene-expression studies and their functions in 

early embryonic development and differentiation (Thomson et 

al. 1998). The studies also focused on development of drugs by 

identifying and targeting the genes and tissues of interest. 

However, with the passage of time, the use of ESCs for trials 

raised huge moral and ethical concerns and cultural 

predicament which limited their use. Due to these hurdles, the 

focus of research was shifted to other sources of stem cells for  
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stem cell-based treatments. Lately, iPSCs were developed by 

two Japanese scientists by reprogramming the adult mouse 

fibroblasts into pluripotent stem cells in 2006 (Takahashi and 

Yamanaka 2006). This was a huge discovery in the field of 

regenerative medicine because these cells appeared similar to 

ESCs in their genotypic, phenotypic and growth kinetics 

behavior. However, the dedifferentiation of adult cell can 

create chromosomal changes which may lead to teratological 

disorders and hence raised a massive concern about their 

safety and use in the regenerative medicine.  

Another source of the stem cells is adult animals, which contain 

both the hematopoietic (HSCs) and non-hematopoietic stem 

cells (Non-HSCs). The bone marrow contains both HSCs and 

non-HSCs or mesenchymal stem cells (MSC). The MSCs are 

multipotent in nature as they can give rise to diversified cell 

types including osteo, chondro, adipo, myo and many other cell 

types. This differentiation is endogenously activated to 

regenerate the dead, diseased, and injured cells in a tissue 

(Caplan 1991). The history of MSCs appeared before 1968, 

when a population of osteoid cells with fibroblastic 

morphology was extracted from bone marrow (Friedenstein et 

al. 1968). Studies in the late twenties showed that these cells 

could differentiate into bone, cartilage and fat-like cells (Dennis 

et al. 1999). This provided the basis for determining that MSCs 

exert their healing abilities by differentiating into other tissue 

types (Miyahara et al. 2006; Quinn and Flake 2008). In many 

studies, the immune modulation activity of stem cells was 

probed, and it is hypothesised that MSCs primarily modulate 

the immune system and are involved in the tissue repair, 

therefore, they exhibit regenerative ability. Now, it is stated 

that perivascular MSCs population in the tissues is involved in 

aiding these cells to sense local or remote tissue injury and 

riposte to it by focused relocation to the site of damage and 

involvement in the therapeutic process (Niess et al. 2016). On 

the basis of this, MSCs should be termed as “medicinal 

signalling cell” instead of “mesenchymal stem cells” as stated by 

Caplan (2017). 

The MSCs are relatively easy to collect in large number, have 

good kinetic potential, and their use in not restricted by ethical 

concerns, therefore, they are considered promising stem cells 

for therapeutic procedures. With the increased focus of the 

scientific community of MSC, their exact definition needed to 

be well elaborated to set a common ground, therefore, The 

Mesenchymal and Tissue Stem Cell Committee of the 

International Society for Cellular Therapy (ISCT) formulated a 

set of canons to define human MSC, which was also 

comprehended in a position paper (Dominici et al. 2006). The 

core concepts articulate that; MSCs must adhere to the plastic 

in standard culture conditions; they must express mesenchymal 

markers including CD73, CD90, CD105 (Sandhu et al. 2017; 

Jurek et al. 2020) and not more than 2% of them must have the 

expression of HLA class II, CD14 or CD11b, CD34, CD79a or 

CD19, and CD45; and they must yield cells of osteogenic, 

adipogenic and chondrogenic lineage on appropriate induction 

in an in vitro setup.  

 

Sources for Isolation of Mesenchymal Stem Cell  

 

There is a long list of tissues and organs used to isolate and 

characterize MSCs. The results indicate that the cells from each 

tissue possess a unique set of features besides the basic 

features of stem cells and these features should be kept in 

consideration while choosing an appropriate source MSCs for 

stem cell based therapeutic purposes. In domestic and 

companion animals, MSCs have been isolated from their adult 

individuals as well as from their respective fetal annexes 

including bone marrow (Sasaki et al. 2018; Zhang et al. 2018; 

Arévalo-Turrubiarte et al. 2019), fat tissue (Sasaki et al. 2018; 

Arévalo-Turrubiarte et al. 2019; Rashid et al. 2021b), synovial 

fluid (Bearden et al. 2017; Arévalo-Turrubiarte et al. 2019), 

patellar fat (Rashid et al. 2021a), umbilical cord (Zhang et al. 

2018; Denys et al. 2020), Wharton’s Jelly (Sarfraz et al. 2021), 

cord blood (Kang et al. 2012), periosteum and muscle (Kisiel 

et al. 2012; Arévalo-Turrubiarte et al. 2019), peripheral blood 

(Sato et al. 2016; Longhini et al. 2019), periodontal ligament 

and gingiva (Mensing et al. 2011), placenta (Carrade et al. 2011), 

amniotic fluid (Sarfraz et al. 2021) and endometrium (Rink et 

al. 2017). In lab animals, MSCs have also been isolated from soft 

tissues including the brain, liver, pancreas, kidney, spleen, 

thymus, lung and muscle (Meirelles et al. 2006). For a long time, 

the most frequently chosen sources of stem cells have been 

adipose tissue and bone marrow, because they yield higher 

numbers of cells as compared to other tissues. Of the two, the 

former has gained attention due to its minimal invasiveness to 

the donor, but has similar properties to stem cells isolated 

from bone marrow, including trilineage differentiation and 

immunophenotyping (Bearden et al. 2017; Sasaki et al. 2018). 

They differ in terms of growth kinetics, plasticity and secretory 

activity (Arévalo-Turrubiarte et al. 2019; Fideles et al. 2019; 

Villatoro et al. 2019). Even within same type of tissue, for 

example adipose tissue, the anatomical location for cell 

isolation matters (Yaneselli et al. 2018; Rashid et al. 2021b).  

The established fact is that the phenotypic and genotypic 

characteristics of the stem cells are greatly influenced by the 

type and location of the tissue, therefore, it is of utmost 

importance to consider these properties while choosing the 

cells for regenerative and therapeutic purposes. Furthermore, 

there is no general rule of thumb to prefer one type of tissue 

over the other for stem cell isolation. Apart from the in vitro 

culture conditions, the cellular properties are partly influenced 

by the donor’s conditions like species, age, health etc. Because 

of different variations, there is no single yard stick for 

comprehensively comparing the results of one study with 

another (Dominici et al. 2006). Though all the MSCs isolated 

from different species and sources show plastic adhesion and 

differentiation, yet their extent of surface antigen expression is 

highly variable and is no way to compare these results with the 

criteria described specially for CD73, CD90, CD105 and other 

hematopoietic lineage markers (Boxall and Jones 2012). 

 

Donor-recipient Relationship for Therapeutic 

Applications 

 

Since stem cells are aimed to treat injured, diseased, and 

degenerated tissues, it is important to understand the 

relationship between donor and recipient. This relationship can 

be one of three types, xenogeneic, allogeneic, or autologous 

(Rashid et al. 2021a). Xenogeneic stem cells are cells used 

across species, the term allogenic means to use stem cells from 

the same species, while the term autologous is used to use cells 

from the same individual. An autologous use of stem cell seems 

the most convenient and efficient than allogeneic, however, 

both have some advantages over the other. The limiting factors 

for the use of autologous stem cells include the time for in vitro 

cell expansion, health status and age of patient (Zajic et al. 

2017; Fideles et al. 2019; Taguchi et al. 2019). Contrarily, the 
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allogeneic stem cells are ready to use, obtained from a young 

and healthy individual as well as passed a number of safety and 

scrutiny tests.  

The limitation in the use of allogeneic stem cell therapy is the 

likelihood that major histocompatibility complex class-I on a 

donor’s MSCs is identified by the recipient’s T cells, leading to 

immediate cytotoxicity of donor cells. Moreover, major 

histocompatibility complex class-II molecules can be identified 

by recipient’s T cells, leading to humoral or cytotoxic immune 

reactions. Major histocompatibility complex molecules may 

also be indirectly recognised by antigen presenting cells (APCs) 

to produce antibodies in B cells (Wieczorek et al. 2017). 

Numerous studies using allogeneic cells in preclinical and 

clinical trials show immune responses in in vivo and in vitro 

settings (Joswig et al. 2017; Oliveira et al. 2017; Cabon et al. 

2019; Ursini et al. 2019). These immune reactions have raised 

questions about the immune-privileged status of MSCs in 

allogeneic use. Even with the repeated exposure of allogeneic 

stem cells, the immune reaction was not diminished, contrarily, 

severe local side effects have been reported in the host’s 

immune response (Joswig et al. 2017; Bertoni et al. 2019; 

Cabon et al. 2019). Still, some studies suggest non-statistical 

difference in host’s response on repeated exposures (Magri et 

al. 2019). Not only the immunogenic properties of clinically 

tested MSCs vary, their MSC expression also vary which seems 

largely depended on the species and breed of origin, tissue, 

culture environment and even on the individuality of the donor 

(Ménard et al. 2020). Although many studies have 

demonstrated the immunomodulatory properties of allogeneic 

mesenchymal stem cells, the issue of immunogenic response 

has plagued the use of these cells, making autologous cells still 

the best choice for regenerative biology in contemporary 

settings. 

 

Therapeutic Potentials of Mesenchymal Stem Cells 

 

More recently, stem cells have been thought to heal diseased 

and damaged tissues by differentiating and replacing these cells. 

MSCs are now found to be involved in complex immune 

regulatory mechanisms, including paracrine, vesicle release, 

immune regulation, and cell-to-cell transfer of organelles. 

 

Paracrine Secretions  

 

The immune cells including natural killer cells (Spaggiari et al. 

2006), dendritic cells (Gao et al. 2017), macrophages, as well 

as B and T cells to be affected by MSC paracrine signalling. 

Likewise, many factors and cytokines are thought to have 

immunomodulatory effects, among them are tumor necrosis 

factor (TNF) stimulated gene-6 (TSG-6), interleukin 10 (IL-10), 

transforming growth factor-beta (TGF-β), prostaglandin E2 

(PGE2) and indolamine-2,3-dioxygenase (IDO). 

TSG-6 is an inflammation-related protein that is also involved 

in anti-inflammatory and protective functions (Day and Milner 

2019). TSG-6 is released by MSC and is involved in cellular 

structure, vesicle size, growth kinetics, plasticity and survival, 

hence is vital for MSC stemness (Romano et al. 2019). TSG-6 

triggers the switch from M1 to M2 phase, which alleviates the 

signs of inflammation in many diseases (Wang et al. 2015b; Um 

et al. 2017; Song et al. 2018; An et al. 2020). 

IL-10 is a known anti-inflammatory factor that limits Th1 and 

Th2 responses and the axillary roles of dendritic cells and 

macrophage; as well as inhibits T-cell proliferation (De Vries 

1995). IL-10 is secreted by the contact of T-cells and 

inflammatory milieu (Najar et al. 2015; Um et al. 2017). 

TGF-β is an important growth factor that contributes to cell 

propagation, plasticity, angiogenesis, wound healing and 

embryonic development (Gordon and Blobe 2008). The 

homing and migration of MSCs are also affected by TGF-β 

(Deng et al. 2017a; Dubon et al. 2018). TGF-β, like TSG-6, 

triggers the transition of macrophages from an inflammatory 

(M1) to an anti-inflammatory/regulatory (M2) state, thus 

helping to regulate T cells (Schmidt et al. 2016; Gazdic et al. 

2018; Liu et al. 2019; Wu et al. 2020).  

PGE2 is a major prostaglandin that blocks pro-inflammatory 

cell migration, modulates chemokine production, and 

promotes regulated cell differentiation (Kalinski 2012). It is 

important in NK-cell inhibition (Spaggiari et al. 2008) and in M2 

conversion of macrophage polarization (Jin et al. 2019). 

Recently, it was reported to aid in the clearance of apoptotic 

cells by MSC (Zhang et al. 2019). 

IDO is involved in multiple roles, including lymphocyte arrest 

(Spaggiari et al. 2008; Franquesa et al. 2015) and M2 

transformation of macrophage, (François et al. 2012). This 

enzyme is secreted in an inflammatory milieu by MSCs (Luk et 

al. 2017). 

The above discussion suggests that MSCs can alter the 

progression of events through paracrine responses, thereby 

altering and regulating local niches. 

 

Release of MSC-derived Extracellular Vesicles (MSC-

EVs) 

 

The role of MSCs in regulating inflammatory cells is not limited 

to affecting cells through a paracrine mode but can also 

modulate niche by secreting vesicles in the extracellular 

environment. These vesicles are enveloped and protected by 

components of the plasma membrane, so they can be 

transported over long distances in the body (Jung et al. 2013; 

Mäkelä et al. 2015). 

The vesicles are involved in M2 conversion of macrophages 

(Hyvärinen et al. 2018), T-cell suppression (Crain et al. 2019) 

and upregulation of IL-10 (Park et al. 2019). Vesicles have 

shown therapeutic potential in respiratory (Khatri et al. 2018), 

renal (Eirin et al. 2017), neurological disorders (Deng et al. 

2017b; Ruppert et al. 2018) hepatic (Haga et al. 2017) and 

cardiac cell damage (Liu et al. 2017). They help to promote 

healing through formation of new blood vessels and the 

production of extracellular connective tissue matrix (El-

Tookhy et al. 2017). 

Studies have shown that vesicles can function in a cell-free 

environment, thereby avoiding the possible side effects of MSC 

immune response elicitation (Mäkelä et al. 2015). Nonetheless, 

cell-to-cell interactions are still required to confer 

immunomodulatory properties (Luk et al. 2016 & 2017; Gao et 

al. 2017). 

Major hurdle, so far, is the lack of a gold standard technique 

for the isolation and standardization of MSC-EVs. The most 

commonly used techniques to isolate MSC-EVs include 

ultracentrifugation, isolation kits, ultrafiltration, and 

chromatography. Different techniques yield vesicles of different 

sizes, characteristics and degree of purity. Therefore, it is 

believed that each type of MSC-EV has its own unique function. 

Furthermore, there are many discrepancies and ambiguities in 

the available literature on MSC-EVs (Reiner et al. 2017; Toh et 

al. 2018) leading the International Society for Extracellular 
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Vesicles to require the use of generic terms for such vesicles, 

unless they are fully defined. Moreover, the society urged to 

explain the methods of isolation and characterization of MSC-

EVs in detail so that the similar results could be reproduced. 

 
Apoptosis-Derived Immunosuppression  
 
Phagocytosis is not only involved in the clearance of dead and 
dying cells, but also contributes to the immune response, 
therefore, have immunomodulatory functions. This effect was 
recoded in an experiment in which heat inactivated MSCs 
increased IL-10 and decreased interferon, suggesting that the 
elicitation of immune function is independent of MSCs (Luk et 
al. 2016). 
Contemporary studies suggest that cells of the innate immune 
system mediate MSC immunomodulatory effects. MSCs have 
been shown to undergo phagocytosis when physically interact 
with T-cytotoxic cells and monocytes/ macrophages. The 
macrophages/monocytes that engulf MSC subsequently exhibit 
indolamine-2,3-dioxygenase activity (Galleu et al. 2017) to 
inhibit T-cell proliferation (Cheung et al. 2019). 
 
Transfer of Organelles  
 
In addition to the mechanisms described above, MSCs were 
also observed to transfer their mitochondria and other 
organelles through tunnels (Spees et al. 2006). The transfer 
facilitates in respiration in the recipient cell. When MSCs 
transferred their mitochondrial contents to immune cells, they 
showed better phagocytic and antimicrobial activity (Jackson et 
al. 2016). Other similar studies have shown that organelle 
transfer mechanisms can be used to pave the way for the 
treatment of physiological disorders and pathological 
conditions.  
 
Homing of the Damaged Tissue by MSCs 
 
In addition to their potential to modulate the immune system 
through direct interaction and release of extracellular vesicles, 
MSCs home the damaged tissue and release the growth factors, 
chemokines and cytokines. The chemokines upon activation, 
are involved in the cell migration (Wynn et al. 2004; 
Chamberlain et al. 2008; Zou et al. 2011). MSCs homing also 

originates from different growth factors, including TGF-β1 

(Gao et al. 2014), vascular endothelial growth factor (Ball et al. 
2007), insulin-like growth factor-1 (Xinaris et al. 2013), 
fibroblast growth factor (Wang et al. 2015c) and hepatocyte 
growth factor (Forte et al. 2006). MSCs homing is also 
influenced by physical stimuli like stress and strain (Xiaorong 
et al. 2019). It is preferred that the stem cells should be 
administered in the parenchyma of the desired tissue, however, 
it is not always possible (Nowakowski et al. 2016), therefore, 
general administration is performed. 
In general, IV administrations, MSCs face many challenges, 
including migration from the systemic circulation to desired 
tissues (Nowakowski et al. 2016) mainly due to entrapment in 
the lung (Gao et al. 2001; Eggenhofer et al. 2012; Jasmin et al. 
2014). In the lung tissue, integrins are over activated resulting 
into cellular interactions (Wang et al. 2015a). Another obstacle 
to systemic infusion of MSCs is their short lifespan, because 
they disappear 24 hours after infusion (Eggenhofer et al. 2012; 
de Witte et al. 2018), therefore no long-term benefits can be 
obtained, yet some effects can be attained with their apoptosis-
linked immunomodulation (de Witte et al. 2018). 

Alternatives to IV, intra-arterial (IA) and intraperitoneal routes 

are experimented because they bypass filtering organs and 

tissue entrapment, thus providing better tissue distribution. In 

the IA injection of MSCs, the organs showed better cellular 

uptake, especially in the liver (Mäkelä et al. 2015). Contrarily, 

IA administration is complicated by challenging procedures and 

possible intravascular occlusion and thrombosis (Sole et al. 

2013). It was later shown that the problem of thrombosis could 

be avoided by injecting cells without a tourniquet (Trela et al. 

2014). Similar to IA, intraperitoneal administration of cells 

showed favourable results because the cells housed the desired 

tissues and did not induce immune reactions (Gooch et al. 

2019). 

In the recent years, stem cells have been widely studied and 

used in clinical and preclinical trials which lead to a better 

understanding of their mode of action, therapeutic activity and 

healing power. Modern understanding redefines their nature 

and role in regenerative medicine, thus opening up new 

horizons and perspectives in the field of regenerative medicine. 

Many questions about MSC implantation have already been 

answered that allow us to use these cells effectively, but at the 

same time, new problems have arisen that need to be 

addressed. However, with current knowledge about the role 

of stem cells in veterinary regenerative medicine, we can better 

address animal diseases and pathologies. 
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