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INTRODUCTION 

 

Parasites are the living organisms (eukaryotes) that depend 

upon their host (definitive or intermediate) for their survival 

(Chulanetra and Chaicumpa 2021). They may be unicellular or 

multicellular organisms such as protozoa and metazoan. 
Parasites that are responsible for manifestation of disease in 

humans and animals can be classified in three main categories 

such as helminths, protozoans and arthropods (ectoparasites). 

Helminths and arthropods belong to kingdom Animalia 

whereas protozoans are classified into kingdom Protista 

(Verma 2021). Helminths have been further categorized into 
two phyla. Nematodes belong to the phylum Nematoda while 

flukes and cestodes are classified into phylum Platyhelminthes. 

Parasites have remarkable diversity in their life cycle and host 

(Cribb et al. 2003). 

Although there is diverse taxonomy of the parasites, they 

share same mechanism to evade, overcome, and decrease the 
immune response of host to maintain their life cycle and 

parasitism due to which they are considered as the most 

successful organisms on earth (Chulanetra and Chaicumpa 

2021). This chapter describes the most significant tactics 

employed by selected protozoa and helminths with special 

emphasis on Fasciola species to avoid, resist, withstand, inhibit, 
and alter the host immunity which is mounted against them. 

 

Circumventing the Physical/physiological Barriers of 

the Host 

 

In most cases, healthy skin is a powerful barrier that serves as 
the first check point against pathogens attempting to enter 

in the host. However, several helminthic parasites may infect 

humans by penetrating straight through the epidermis. 

Hookworm larvae (Necator americanus) and Strongyloides 

stercoralis (threadworm) a filariform larva can enter cutaneous 

surfaces of humans walking barefooted on contaminated 
ground. At helminth-penetrating location, the larvae generate 

a focused irritating region (ground itch), as well as rashes and 

papules. Humans that swallow contaminated substances can 

be infected by Ancylostoma duodenale larvae. Hookworm 

larvae that penetrate the skin can result into cutaneous larva 

migrans, which looks like a snake's track (Albanese et al. 

2001). Urocanic acid is a metabolite of histidine which 

attracts Strongyloides spp. and is high in human and animal host 
skin and skin secretions (Safer et al. 2007). 

The larvae of the mammalian Schistosoma spp. enter the skin 

of humans after their escape from snail into water. These 

infective larvae grow into adult parasites inside the 

mammalian host, causing various kinds of schistosomiasis 

based on the species of invading flukes. Urogenital 
schistosomiasis is caused by Schistosoma haematobium, which 

can lead to development of cancer of bladder (Ajibola et al. 

2019) whereas S. mekongi, S. mansoni and S. japonicum, lead to 

intestinal and hepatic schistosomiasis (Elbaz and Esmat 2013). 

Schistosomes of aviary birds and animals are capable to enter 

in skin of human beings, but unable to mature further. Instead, 
they are limited to the site of penetration and result in 

cercarial dermatitis (Kolarova 2007; Horák et al. 2015). While 

some parasites, like trypanosomatids (Leishmania spp., 

Trypanosoma spp.), Babesia, Plasmodium spp., and filarial worms 

(Oncocerca volvulus, Brugia malayi, Wuchereria bancroft, B. timori, 

Loa loa) need vectors (ticks, hematophagous flies, mosquitoes 
and bugs) to transmit their invasive stages into their hosts.  

Plasmodium-positive Anopheles bite can deliver up to 200 

sporozoites into skin of human (Gomes et al. 2016). In 

addition to sprozoites, biting mosquitos also inject a variety of 

salivary constituents into the skin, including antihistamines, 

immunomodulators, anticoagulants, vasodilators, and platelet 
agglutination inhibitors, all of which aid in survival of 

sporozoites (Zheng et al. 2014). Even though many 

Plasmodium sporozoites are eliminated by host's innate 

defence components at the inoculation site, others manage to 

evade the immune system by diverse mechanical tactics, such 

as fast intercellular gliding movements (Vanderberg 1974). 
Invasion movement to invade hepatocytes, where the 

erythrocyte-infecting form, merozoites, is produced (Yuda 

and Ishino 2004; Tavares et al. 2013; Risco-Castillo et al. 

2015; Gomes et al. 2016). Plasmodium sporozoite and 

its secretory organelles have a protein called thrombospondin 

related anonymous protein (TRAP) that enables sporazoite 
to interact with molecules of host skin surface and provide 

it with gliding movement to leave the skin via blood capillaries 

 

 

How to cite this chapter: Alvi MA, Ali RMA, Qamar W, Saqib M, Rashid I, Ashfaq K, Abbas MZ, Shafeeq M, Shahid S and Ejaz 

F, 2022. Immune evasion mechanisms of parasites with special focus on fasciola hepatica. In: Abbas RZ, Khan A, Liu P and Saleemi MK (eds), 

Animal Health Perspectives, Unique Scientific Publishers, Faisalabad, Pakistan, Vol. I, pp: 30-38. https://doi.org/10.47278/book.ahp/2022.05  

CHAPTER 05 

mailto:athar4545@gmail.com
mailto:wardaqamar17@gmail.com
https://doi.org/10.47278/book.ahp/2022.05


 31 

(Müller et al. 1993; Gomes et al. 2016). The sporozoites 

enter liver from bloodstream by penetrating the sinusoidal 

cell layer of liver and infecting the hepatocytes. The 

sporozoites employ perforin-like protein (PLP1) to avoid 

breakdown by lysosomes of hosts during movement across 

the cell (Patarroyo et al. 2011). The surface coat of 

sporozoites, circumsporozoite protein (CSP), attaches to the 

highly sulfated glycosaminoglycan chains which are generated 

by stellate cells and hepatocytes (Menard et al. 2013). The 

sporozoites live within the parasitophorous vacuoles, where 

they produce a large number of blood-stage merozoites.  

The causative agents of sleeping sickness (Trypanosoma brucei) 

use the tsetse fly (obligate hematophagous) as a vector to 

transfer their infectious trypomastigote stage into human skin 

as fly bites for taking blood meal. Saliva of Tsetse fly 

comprises of anti-hemostatic chemicals for successful blood 

feeding. In addition to this, saliva also contains other 

multifarious constituents that aid in establishing a proper 

infection by transforming the human skin microenvironment 

into a trypanosome-friendly one. Thromboregulatory 

chemicals 5′-nucleotidase-related apyrase and 

nucleotide deaminase found in tsetse fly mouth limit the 

platelet aggregation and blood coagulation at the puncture 

site (Caljon et al. 2010). Antigen 5 is another allergen found in 

fly saliva that can induce hypersensitivity (type-1) (Caljon et al. 

2009). Another constituent, Gloss 2, of tsetse fly saliva 

suppresses immune response of host by reducing the release 

of TNF-alpha, IL-6, IFN gamma and IL-10 from the host. 

Trypanosome transmission and blood feeding by the fly is 

facilitated by these mechanisms (Bai et al. 2015). Growth and 

settlement of trypanosomes in the host is also facilitated by 

the kinesin heavy chain 1 and arginase 1 proteins in case of T. 

brucei infection via suppressing the inflammatory response by 

host immune system (De Muylder et al. 2013). Trypanosome 

lytic factors (TLF1 and TLF2) are poisonous to trypanosomes.  

TLFs are usually found in human blood (Thomson et al. 2009). 

Trypanosoma brucei, on the other hand, has acquired ability to 

resist TLFs by releasing serum resistant associated protein, 

which inhibits TLF function (Thomson et al. 2009). As a 

result, they can progress to create sleeping sickness, which is 

characterized by neuropsychiatric symptoms such as sleep 

disturbance, disorientation, exhaustion, and seizures. If not 

addressed, the sickness might be deadly.  Triatoma bugs are 

carriers of Trypanosoma cruzi which causes Chagas disease. 

Triatomine bugs like to attack peoples face. When bugs 

defecate, trypanosomes present in feces enter in the bite 

wound (Montes et al. 2006). 

Parasitic worms that cause infection in human hosts through 

the mouth must surmount acidic environment of host's 

stomach. Ingested cysts of Entamoeba histolytica and Giardia 

spp. can resist the low gastric pH, allowing the trophozoites 

to germinate and develop in the host. Giardia lamblia infests 

the small intestine, feeds on nutrients in the digestive fluids, 

producing giardiasis in humans (Schofield et al. 1992; Hemphill 

et al. 2019). Oocytes of Cryptosporidium parvum also cause 

diarrhea in immunocompromised individuals (Striepen 2013). 

Trophozoites of E. histolytica break MUC2 mucin using 

glycosidases and cysteine proteases to penetrate the mucus 

layer and populate in the colon by binding with strong affinity 

to mucosa with their surface lectin, producing amoebiasis 

(Moncada et al. 2003; Lidell et al. 2006; Nakada-Tsukui and 

Nozaki 2016).  

Echinococcus granulosus uses components of bile acid to induce 

the development of eggs into oncospheres, which then travel 

to the hepatic system through portal and lymphatic channel, 
where they generally grow into Echinococcus cysts. 

Onchospheres of E. granulosus can occasionally enter the 

pulmonary tissue, bones, brain, or any other organ forming 

hydatid cysts (Wen et al. 2019). Many parasites elude host 

immunity by staying at anatomical regions that are free of the 

host immune factors, such as hollow organs or inside the cells 
of host. To avoid the complement system and antibodies of 

host, red blood cells (RBCs) infected with merozoites of the 

Plasmodium spp. create rosettes with noninfected counterpart 

(Moll et al. 2015). Merozoites are insensitive to major 

histocompatibility complex and lymphocytes mediated killing 

because human red blood cells lack MHC molecules (Bowen 
and walker 2005). According to one study, a splenectomized 

squirrel monkey exhibited less Plasmodium-infected 

erythrocyte sequestration than an untreated animal. 
 

Appropriation in Host 
 

Several parasites elude host immunity by staying at 

immunological favored areas/regions that are free of the 

host’s defense mechanism, such as within the host cells or 

body cavities. Blood cells lack major histocompatibility 

complex due to which parasites are able to survive within 
blood cells (Bowen and Walker 2005). Most of the life forms 

of blood parasites are not available in blood circulation after 

maturity (trophozoites and schizonts). This is made possible 

through a process known as sequestration which is also an 

immune evasion mechanism of the parasites (Miller 1969). 

Babesia spp. infect erythrocytes and generate molecules on 
their surfaces, causing infected red blood cells to attach to 

the vascular wall (Allred and Khedery 2004). In this way, they 

escape the elimination of themselves by the spleen. 

Trichinella species, including T. spiralis, T. britovi, T. nativa, and T. 

nelsoni develop L3 larvae in muscle cells of the host that give 

rise to nurse cells which shield the parasites from host 
immunological identification while simultaneously supplying 

them with nutrients obtained from the host (Wu et al. 2008). 

Several parasites, such as Taenia spp., Ascaris spp., and 

Opisthorchis viverrini, reside in the host's body cavities, such as 

the gut lumen. They cannot be accessed by the 

immunoglobulins at these places, and the secretory IgA 
produced in the mucosal cells cannot activate the 

complement system. In addition, the epithelium of 

intestine produces many factors that have the potential to 

neutralize complement protein molecules (Sun et al. 1999; 

Andoh et al. 2001). 

 
Antigenic Disguise 
 

Several parasites have the host components in their coat such 

as carbohydrate conjugates and proteins to avoid being 

detected as foreign particles by the host immune cells. To 

escape the recognition by host immune system, adult flukes 

acquire antigenic proteins of the host such as erythrocyte 

associated antigens, integrins, complement proteins, collagen, 
monoclonal antibodies, CD44, and MHC (class-1) (Goldring 

et al. 1976; Snary et al. 1980; Braschi et al. 2006). Schistosoma 

spp. generate paramyosin muscular protein that interacts to 

host Fc segments of antibodies and complement 1 (C1) and 

complement 9 (C2) for antigenic disguise and action against 

complement (Laclette et al. 1992).  



 32 

Onchocerca volvulus microfilariae (causative agent of river 

blindness) cover themselves with factor H which helps them 

to mask surface antigens (Meri et al. 2002). The host cells 

produce the outermost layer that encases the 

Echinococcus hydatid cyst developed in host organs. In this 

way, the pericyst is vital not only in parasite growth and 

sustainability, but also in escape from immune response by 

the antigenic masking process (Golzari and Sokouti 2014). 

 

Different Developmental Forms of Parasites 

 

Almost all parasites have a complicated lifecycle that includes 

many growth phases or variations that exhibit various 

surface antigens, driving the host to generate diverse/specific 

immune responses. In most cases, the immunity to one 

epitope of antigen is useless against the other epitopes.  

Adult male and female parasites have different secretory and 

excretory products and protein profile as indicated by a 

proteomic study (Moreno and Geary 2008). Out of 228 

proteins in microfilarial worm in a study, only 32 proteins are 

shared by male and female parasites (Moreno and Geary 

2008). Different proteins in larval and adult parasite in both 

male and female indicate their different mechanisms for 

survival within the host (Reamtong et al. 2019). This antigenic 

variety renders them excellent escape from host’s immune 

system. Schistosoma species have complex life cycle and 

includes various stages such as miracidium, sporocyst, 

cercariae, schistosomulae and adult (Khurana et al. 2005). 

After infection in the host animal, Schistosoma spp. express 

different proteins that have different biochemical composition 

(Gryseels et al. 2006; Colley et al. 2014; Smit et al. 2015). 

 

Common Antigens of Host and Parasite 

 

Many parasites have the ability to produce antigens that have 

molecular similarity with mammalian host components. By 

doing this, they are recognized as self and secure themselves 

from the host’s immune response. Human Schistosoma spp. 

possess CRIT gene that has 98% similar nucleotide sequence 

with mammalian analogue (Inal 1999). Eggs and cercariae of 

Schistosoma are rich in CRIT (Deng et al. 2003). Plasmodium 

sporozoite protein has composition similar with host 

thrombospondin (Robson et al. 1988). 

 

Resisting Killing by the Host 

 

To finish the life cycle, parasites can avoid immune system by 

competing with phagocytic activity and avoiding the very 

deadly oxidative radicals and digestive enzymes of host cells in 

their surroundings.  

Hemozoin, a substance produced by some blood parasites, 

interfere the phagocytic activity of the macrophages 

(Belachew 2018). Leishmania spp. produce nuclease that 

causes the digestion of neutrophil (Guimarães-Costa et al. 

2014). Sand flies possess endonuclease in their saliva that also 

increase the chances of survival of Leishmania parasite (Chagas 

et al. 2014). L. donovani outer membrane is composed of 

lipophosphoglycan which prevent the phagosome maturation 

and neutrophil mediated damage. Promastigote is a life cycle 

stage of the Leishmania that survives within macrophages by 

this mechanism (Holm et al. 2001). T. gondi employs a number 

of mechanisms to evade of killing by the host cells and can 

enter host tissue directly via actin-based movement known as 

gliding motility (King 1998). 

 

Avoiding Complement Mediated Killing 

 

To avoid complement-mediated elimination, parasites have 

developed a number of ways. One of the mechanisms is the 

production of parasite proteins conjugating to complement 

components and impede the actions of the complement 

proteins. Trypanosoma cruzi, and the worms such as Brugia 

malayi and Tichinella spiralis avoid detection by the mammalian 

complement system by generating vertebrate calreticulin 

homologs which indirectly causes the suppression of 

complement classical pathway (Ferreira et al. 2004; Valck et 

al. 2010; Zhao et al. 2017). In human serum, T. cruzi 

calreticulin interacts with ficolins and mannose-binding lectin 

(MBL) and bring about inhibition of the lectin route for 

activation of complement (Sosoniuk et al. 2014).  

T. cruzi also produces regulatory proteins for complement 

pathway and decay accelerating factors to suppress the 

complement activation (Norris and Schrimpf 1994; Shao et al. 

2019). T. cruzi also enhances the survival by producing 

microvesicles that interact with complement 3 (C3) 

convertase enzyme (Cestari et al. 2012; Wyllie and Ramirez 

2017; Shao et al. 2019). 

Taenia solium and Schistosoma spp. are equipped with the 

mechanisms for complement inactivation. They perform this 

activity by producing paramyosin (Parizade et al. 1994) which 

bind with C3 and C8 causing the inhibition of membrane 

attack complex (MAC) formation. 

Parasite’s immune evasion strategies that have been included 

in this manuscript are summarized in Table 1. 

 

Review of Fasciola Immune Evasion Mechanisms 

 
Fascioliasis is one of the helminths borne zoonotic diseases of 

the livestock caused by F. hepatica and F. gigantica (Mas-Coma 

et al. 2005). The disease leads to high mortality and morbidity 

causing a huge impact on livestock business and is of great 

veterinary concern. (Mas-Coma et al 2019). Fasciola infection 

has recently been added to the World Health Organization's 

list of neglected illnesses, with clinical cases found in the 

America, Asia, Africa, Europe, and Oceania as well as other 

temperate countries (Mas-Coma et al. 2014; Mehmood et al. 

2017; Mas-Coma et al. 2019). This is a major foodborne 

disease that is currently thought to impact approximately two 

million people in over 70 countries, with developing countries 

more severely affected (Mehmood et al. 2017; Mas-Coma et 

al. 2018). 

The life cycle of Fasciola species is completed in two hosts. 

Sheep and cattle are their definite host while snails serve as 

the intermediate host (Bethony et al. 2006; Jourdan et al. 

2018). It spread by the ingestion of encysted metacercariae. In 

the small intestine, metacercariae excyst, and change into new 

form called excysted juveniles (Moazeni and Ahmadi 2016).  

Furthermore, this infective stage of the parasite moves 

towards the liver through the intestinal wall of the animal. 

(Mas-Coma et al. 2014; Cwiklinski et al. 2016). The parasite 

causes many destructive changes in the host body leading to 

inflammation and finally reaches the bile ducts of host liver 

where it attains adult size having the ability to lay eggs. 

Different strategies are adopted by the parasites to 

hide/evade from immune response as shown in Figure 1. 
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Table 1: Summary of immune evasion tactics of the parasites 

Evasion Strategy Evasion Mean Parasite Factor/ Mechanism Involved References 

Overcoming host’s 

physical and 

physiological barrier 

Skin penetration Hookworms Larvae enter in skin through minute break in skin Albanese et al. 2001 

  Strongyloides stercoralis Urocanic acid, a histidine metabolite that attracts Safer et al. 2007 

 Vector and Vector’s 

salivary factors 

Plasmodium spp. Biting mosquitos inject antihistamines, 

immunomodulators, anticoagulants, vasodilators, 

and platelet agglutination inhibitors 

Zheng et al. 2014 

  T. brucei Tsetse fly release thromboregulatory compounds Caljon et al. 2010 

 Mechanical damage by 

the vector 

T. cruzi Biting wound caused by triatomine bug Montes et al. 2006 

 Resistance to serum 

toxic molecules 

T. brucei Serum resistance associated proteins Thomson et al. 2009 

 Tolerate gastric acidity Giardia lamblia, 

Entamoeba histolytica, 

Cryptosporidium parvum 

Cysts; modification of microenvironmental 

condition in intestinal mucosa 

Schofield et al. 1992; 

Striepen, 2013; 

Hemphill et al. 2019 

 Breach intestinal 

mucosa 

Entamoeba histolytica glycosidases and cysteine proteases  Moncada et al. 2003; 

Lidell et al. 2006; 

Nakada-Tsukui and 

Nozaki 2016  

 Digesting extracellular 

matrix 

Entamoeba histolytica Many kinds of proteases Nakada-Tsukui and 

Nozaki 2016 

 Exploit Bile acids and 

salts 

Echinococcus granulosus Development of its ingested eggs into oncospheres 

in the small intestine, which then travel to the 

hepatic system through portal and lymphatic 

channel, where they generally grow into 

Echinococcus cysts. Onchospheres of E. granulosus 

can occasionally enter the pulmonary tissue, bones, 

brain, or any other organ forming hydatid cysts 

Wen et al. 2019 

Sequestration in 

host’s 

immunological 
privileged sites 

Reside in blood cells Babesia spp. GPI anchor surface protein. Microneme proteins Allred and Khedery, 

2004 

 Sequestration Babesia spp. Parasite induced red blood cells membrane 

proteins 

Allred and Khedery, 

2004 

 Nurse cells Trichinella spp. Parasite induced host process that involve muscle 

cell response (de-differentiation and arrest) 

Wu et al. 2008 

 Reside in hollow organs Taenia spp., Ascaris spp., 

and Opisthorchis viverrine 

Avoid effective serum IgG and IgM 

Anti-complementary activity 

Sun et al. 1999; 

Andoh et al. 2001 

Antigenic disguise Masking host/ host 

derived molecules 

Schistosoma spp. Erythrocyte associated antigens, integrins, 

complement proteins, collagen, monoclonal 

antibodies, CD44, and MHC (class-1) 

Goldring et al. 1976; 

Snary et al. 1980; 

Braschi et al. 2006 

  Schistosoma spp. Paramyosin, Fc fragment of immunoglobulin and 

complement C1 and C9 protein 

Laclette et al. 1992 

  Onchocerca volvulus Factor H Meri et al. 2002 

  E. granulosus Host cells form outermost layer Golzari and Sokouti, 

2014 

Parasites exist in 

different 

developmental 

forms 

Different 

morphological forms 

Schistosoma spp., 

Trypanosoma spp. and 

many others 

Parasites exist in various forms and shapes. They 

express different genes during their life which in 

turn changes surface antigenic proteins 

Gryseels et al. 2006; 

Moreno and Geary, 

2008; Colley et al. 

2014; Smit et al. 2015; 

Reamtong et al. 2019 

Sharing of antigen 

between host and 

parasite 

Complement resistance Schistosoma spp. Complement C2 receptor inhibitory trispannin 

(CRIT) 

Inal, 1999; Deng et al. 

2003 

Resist killing by the 

host 

Interrupt phagocytic 

activity, resistance to 

toxic chemical synthesis 

Plasmodium Hemozoin Belachew, 2018 

 Neutrophil resistance Leishmania spp. Nuclease/ nucleotidase Chagas et al. 2014 

Prevention of 

complement 

mediated killing 

Interfere classical 

pathway 

Trypanosoma spp. Calreticulin homologs Ferreira et al. 2004; 

Valck et al. 2010 

  Trypanosoma spp. microvesicles interact with complement 3 (C3) 

convertase 

Cestari et al. 2012; 

Wyllie and Ramirez, 

2017; Shao et al. 2019 

 Inhibition of membrane 

attack complex (MAC) 

formation 

Taenia solium and 

Schistosoma species 

Production of paramyosin Parizade et al. 1994 
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Fig. 1: F. hepatica immune evasion ways/ mechanisms. 
 

Fatty Acid Binding Proteins (FaBPs) 

 

Fasciola hepatica has FaBPs that arbitrate the lipid response in 

cells and is linked with metabolism and inflammation 

(Furuhashi and Hotamisligil 2008). Till now, there are four 

fatty acid binding proteins found in the excretory products of 

F. hepatica which have two roles viz. antioxidant and nutritive 

role for the F. hepatica (Robinson et al. 2009). Moreover, 

experimentally induced infection of F. hepatica causes decline 

of the immune system of host especially circulating cytokines 

(Ramos-Benítez et al. 2017). 
 

Mucin-like Peptides 
 

Some mucin-like peptides formed in the host’s body act like 

excretory products and save the F. hepatica from the host 

immune system. These proteins are functionally and 

chemically similar to mucin (Cancela et al. 2010; Cancela et al. 

2015). Experimental studies reveal that synthetic mucin 

quantity increases in the peritoneal cells of infected mice with 

Fasciola hepatica (Noya et al. 2017). 

 

Excretory-secretory Products 

 

F. hepatica releases various immunomodulatory molecules in 

the host body which are known as excretory-secretory (ES) 

products that alter the immune system of the host. These 

excretory-secretory products play an important role in the 

survival of the parasite in the host body. FhTLM, FhKTM, 

FaBP, TPx, Prx, and FhGST are the important excretory-

secretory products of F. hepatica released in the host body 

(Jefferies et al. 2001). 

 

TGF-β mimics 

 

Bioinformatics approaches have shown that there are three 

transforming growth factor β (TGF-β). During parasitic 

development, TGF like molecules have a very important role, 

for example, recombinant F. hepatica TGF like molecules 

assist newly excysted juveniles (NEJ) sustainability and 

development by decreasing the nitric oxide (NO) production 

by the microphages (Sulaiman et al. 2016).  
 

Antioxidants 
 

F. hepatica has thioredoxin peroxidase/peroxiredoxin 

(TPx/Prx) antioxidant which detoxifies the metabolites of the 

immune system of the host increasing the survival chances of 

the parasite in the host body (McGonigle et al. 1997; 

McGonigle et al. 1998). F. hepatica produces Glutathione S-

transferases (GSTs) which comprise about a total of four 

percent of their protein part and act as ES product protecting 

the parasite from free radicals (Chemale et al. 2006; 

LaCourse et al. 2012). Fasciola hepatica uses an important 
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antigen namely nFhGST which stops the Th1 responses as 

well as suppresses NF-kB pathway through JAK/STAT 

(Aguayo et al. 2019). 
 

Cysteine Proteases 
 

Cysteine proteases are the major part, about 80%, of ES 

product of F. hepatica. It plays an important role in the 

infestation of the F. hepatica (Robinson et al. 2008). A total of 

5 classes of Fasciola cathepsin have been identified in which 2 

are associated with the juvenile infective stage of the animal 

while three are specific to adult stage infection. FhCL1, 

FhCL2, and FhCL5 are found in adults while FhCL3 and 

FhCL4 in juveniles. FhCL3 secretion increased in the initial 

stage of immature juvenile infection which help the parasite in 

blocking the host immune system especially eosinophil 

(Carmona et al. 1993). 
 

Protease Inhibitors 
 

Kunitz serine protease has been recognized in F. hepatica 

(Bozas et al. 1995). Moreover, F. hepatica Kunitz type 

molecule (FhKTM) has exception against cysteine proteases 

(Smith et al. 2016). FhKTM has a specific role to deceive the 

immune system by impairing Th1 and Th17 responses by 

inducing a regulatory change in IL-27. 

 

Helminth Defense Molecules (HDMs) 

 

Helminths including Schistosoma mansoni, Paragonimus 

westermani, and Schistosoma japonicum have helminth defense 

molecules as secretory products which help the parasite to 

destruct the immune system of the parasites. It seems that the 

parasite secretes 8kDa protein during the whole life of 

infestation which acts as HDMs. Furthermore, HDMs divide 

into three groups: Fasciola/Asian fluke HDMs, Schistosome 

HDMs, and Sm16-like molecules. These groups have a unique 

structure, they have N-terminal peptide and helical structure 

which also contain hydrophobic C-terminal sequence (Donnelly 

et al. 2005). HDMs have a special feature that during parasitic 

infection. There is always secondary bacterial infections 

occurring at the parasitic site, but the host immune system 

does not trigger although there is tissue damage. It seems that 

the host immune system is suppressed (Onguru et al. 2011). 
 

Miscellaneous Mechanisms 
 

F. hepatica usually causes chronic infection in the animal due 

to the T helper cell 2 (Th2)/ regulatory response in the animal 

which helps the parasite and host tissue for support and 

integrity (McNeilly and Nisbet 2014; Dowd et al. 2017). In the 

initial phases of infection, immune response by T helper cell 2 

and T helper cell 1 (Th1/Th2) gets activated along with 

cytokines including TGF-beta, IFNγ, IL-10, and 1L-4 activation. 

As Fasciola infection increases, the Th1 is suppressed and Th2 

is amplified (O’Neill et al. 2000). Cytokines, IL-10 and IFNγ, 
are increasingly influenced by the mixed response at the initial 

stage of infection (Clery and Mulcahy, 1998). Sometimes in 

acute and chronic infections, TGF-β modulates IL-4 while IL-

10 causes modulations in IFNγ (Donnelly et al. 2005; Flynn 

and Mulcahy, 2008). Another strategy adopted by F. hepatica 

to evade immune response of the host is the induction of the 

apoptosis of eosinophils (Escamilla et al. 2016). 

Conclusion 

 

In this manuscript, we have discussed various escaping 

mechanisms of parasites from host’s immune response with 

special emphasis on Fasciola hepatica at molecular level. It has 

been revealed that parasites are endowed with diverse 

tactics/ mechanisms/ ways to overcome the cell mediated and 

humoral immune response. Moreover, these molecular 

entities/ factors and mechanisms can be targeted by designing 

novel vaccines and drugs to prevent and control disease 

against the respective parasite. 
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