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ABSTRACT  
Rotavirus is major cause of gastroenteritis particularly in young and newborn children. The main way that 
the virus spreads is by the fecal-oral route, however, contaminated food, drink, and surfaces can also 
pose a significant risk of transmission. Due to inadequate sanitation and medical facilities, low- and 
middle-income nations are disproportionately affected by RV infections, which cause severe morbidity 
and mortality on a global scale. Various animals are affected by RV infections in addition to people, 
resulting in a variety of types. Infection of host cells, virus replication, assembly, and release of new virus 
particles are all phases of the RV life cycle. Personal contact, contaminated objects, and airborne routes 
are the three ways the disease spreads. According to epidemiology, childhood RV infections are common, 
vary seasonally, and are more severe in low-income countries. RV vaccinations, such as RotaTeq and 
Rotarix have successfully avoided severe gastroenteritis. Passive immunization is the main focus of animal 
vaccines; however, RV Virus-like Particles (RV-VLPs) promise to be a more broadly serotype-covered 
vaccine in the future. RV continues to be a major public health concern, and developments like RV-VLPs, 
as well as the development and execution of efficient immunization programs, are essential for the 
prevention and management of disease worldwide. 
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1. INTRODUCTION  
Rotavirus (RV) belongs to the family Reoviridae and wheel-shaped, triple-layered virion with a diameter 
of about 100 nm (Nirmal and Gangar 2023). They have an 11-segment genome that codes for 5 
nonstructural proteins (NSP1, NSP2, NSP3, NSP4, and NSP5) and 6 structural viral proteins (VP1, VP2, VP3, 
VP4, VP6 and VP7) (Azevedo et al. 2023). RV strains are categorized based on the differences between 
two outside proteins on the virus surface known as VP4 (P-type) and VP7 (G-type) (McDonald et al. 2009). 
These proteins greatly influence the specific RA strain and its antigenic characteristics. These proteins play 
an important role in the antigenic and strain properties of viruses. This is involved in entry into host cells, 
viral attachment, and the target of the host immune system. RVA, RVB, and RVC are the most prevalent 
infecting groups in humans and animals, with RVA strains being the most prevalent (Molinari et al. 2016). 
Birds like chickens and turkeys have RVD, RVG, and RVF. Some mammals like cows, horses, and pigs have 
RVI, RVB, RVH, RVC, and RVE (Vlasova et al. 2020). Bovine RV was the first group of RV separate in cell 
culture and was confirmed as a cause of diarrhea in calves in 1969 (Vlasova et al. 2017). In 1973 human 
RV was discovered by Bishop and his colleagues. The rotavirus mainly causes gastroenteritis, inflammation 
in the digestive system (Sadiq et al. 2018). 
The virus has a significant risk of spreading from person to person. They can contract rotavirus through 
contaminated food, water, objects, or surfaces. This is primarily because it is transmitted through the fecal-
oral route (Sánchez and Bosch 2016). The virus is very resilient and can persist on surfaces for extended 
periods. In temperate climates, RV infections occur more commonly in the winter but may occur in every 
season (Chao et al. 2019). The risk of infection is greater in infants and young children, and symptoms 
usually occur two to three days after contact. The most typical signs and symptoms include vomiting, fever, 
watery diarrhea, and pain in the abdomen (Fig. 1) (Reust and Williams 2016). 
 

 
 
Fig. 1: Symptoms of Rotavirus (Retrieved from Biorender). 
 
WHO estimates 200,000 deaths and millions of hospitalizations annually due to RA, primarily in areas with 
limited resources. Geographical differences affect the severity of rotavirus infection. Severe rotavirus 
sickness and death are more predominant in low and middle-income countries, mainly in Africa and Asia 
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(Varghese et al. 2022). The higher effect in these areas is due to limited healthcare access, clean water, 
and sanitation facilities (Watson et al. 2007). 
 
2. ROTAVIRUS TRANSMISSION 
 
RV spreads from person to person orally through feces (Yekta et al. 2021). In developing nations, RV can 
also spread through water that feces have polluted. RV may also transfer from child to child if caretakers' 
hands come into contact with contaminated objects or surfaces (Brady 2005). The rapid incubation period 
and frequent outbreaks suggest RV gastroenteritis is airborne. RV can be spread through the air in 
healthcare places (Koo et al. 2010). Children with RV infection pass 100 billion virus particles per gram of 
feces (Boone and Gerba 2007). These viruses can live from days to weeks on environmental surfaces, on 
hands for at least 4 hours, and in drinking or recreational water for weeks (Weber et al. 2010). 
Asymptomatic RV infections  
 
3. EPIDEMIOLOGY OF ROTAVIRUS 
 
RV is common and affects almost all children between the ages of three and five. Worldwide, 114 million 
instances of RV infection in children below 5 years old have been recorded in 2003 (Nair et al. 2010). By 
2013, RV had caused more than 200,000 mortalities in children under the age of five around the world 
(Zhou et al. 2023). RV infections are common (about 30–50%) in hospitalized children with diarrhea 
worldwide. Over 90 percent of fatal RV infections happen in low-income nations (Tanaka et al. 2007). RV 
causes comorbid diseases like hunger, restricted access to healthcare, and a lack of availability of 
hydration therapy (Ren et al. 2021). Poor countries experience more cases of rotavirus caused by 
uncommon strains like G9P, and it affects kids at an earlier age than in rich countries. In Africa, almost 
43% of all children hospitalized for RV are infants under 8 months, while in Europe, only 27% (Sadiq et al. 
2018). Hospitalized patients (30-50%) and outpatient treatment patients (15-20%) are more likely to get 
RV-caused diarrhea than those who need home care (5-10%). Diarrhea induced by RV infection is more 
severe than typical (Parashar et al. 2003). RV detection rates were highest in children aged 6-23 months 
(41.8%) and lowest in children aged 6 months (24.7%). Of the 21,421 children enrolled during the four 
years of surveillance, 36.3 percent were positive for RV (Patel et al. 2013). The eastern region had the 
highest percentage of RV-associated diarrhea (39.8%), and the southern region had the lowest (33.8%) 
(Tate et al. 2016). 
 

4. EPIDEMIOLOGY OF ROTAVIRUS IN ANIMALS  
 

RV infections with symptoms are often more frequently found in birds and mammals. Animal RVs' 
molecular epidemiology is similar to that of humans in several respects (Rajendran and Kang 2014). 
RV diseases affect pigs, cattle, horses, and, to a lesser extent, sheep, goats, and camelids. In cattle, RV 
strains have been classified into 11 P types (P1, P3, P5, P6, P7, P11, P14, P17, P21, P29, and P33) and 12 G 
types (G1-G3, G5, G6, G8, G10, G11, G15, G17, and G24) (Matthijnssens et al. 2011). Out of 20 P and G 
combinations, G6P [5], G10P [11], and G6P [11] are most common in many parts of the world, making up 
40% of cases (Uddin Ahmed et al. 2022). Pigs have been found at least 13 P categories (P6 or P7, P5, P8, 
P11, P13, P14, P19, P23, P26, P27, and P32) and 12 G (G1, G2, G3, G4, G5, G9, G6, G8, G10, G11, G12, and 
G26) (Papp et al. 2014: Daykin et al. 2019). However, the P and G genotypes of rotaviruses found in 
camelids, goats, and lambs frequently match those discovered in cattle. Canine RVs have the G3P [3] 
antigen combination in the majority of cases, whereas feline RVs have the G6P [9], G3P [9], and G3P [3], 
and genotypes (Doro et al. 2015). 
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5. EPIDEMIOLOGY OF ROTAVIRUS IN HUMANS 
 

Young kids and infants between the ages of four months and three years are more prone to experience 
extreme clinical symptoms of RV (Khemani et al. 2017). Most kids are infected with RV by age five, 
although the rates vary by region (Page et al. 2016). RV infections frequently exhibit seasonal trends in 
temperate zone states, with the epidemic peaks more pronounced during wintertime (Shaman and Kohn 
2009). In industrialized nations, one genotype dominates in a geographic location during a season. 
However, minority strains can still have distinct genotypes. In some years, no single dominant strain can 
be discovered in underdeveloped nations, and illnesses caused by many RV genotypes, that is, mixed 
infections, are common.17 P types (P1 to P11, P14, P15, P19, P24, and P28) and 14 G types (G1, G2, G3, 
G4, G5, G6, G8, G9, G10, G11, G12, G13, G14, G20 and G26), as well as almost 90 RVA antigen mixtures 
have been detected in youngster around the world through surveillance studies (Amimo et al. 2013). 
G12P [8] and G9P [8] strains have recently become widespread worldwide from 1990 to onward. G2P 
[8] and G1P [4] strains are frequently observed to co-circulate with G2P [4] and G1P [8] (Hungerford 
2019). G2P [4] strains became more prevalent over successive seasons in regions where the national 
immunization strategy used the G1P [8] Rotarix vaccine (Bibera et al., 2020). The G8P [6] and G5P [8] 
viruses, which are found in various regions of Sub-Saharan Africa and South America, respectively, are 
historical instances of regionally prevalent strains (Linhares 2011). Porcine-like G4P [6] strains and G3P 
[9] strains are two examples that have been found in humans over the past 20 years in many countries 
all over the world (Wang et al. 2014). 
 
6. LIFE CYCLE 
 

The RV involves infecting host cells, replicating, assembling, and releasing new virus particles (Ravindran 
et al. 2016). In the small intestine, the RV first binds to certain receptors on the surface of host cells. A 
sugar molecule known as Salic acid serves as the main receptor. Following attachment, the virus enters 
the host cell through a process known as endocytosis, in which the cell engulfs the viral particle and 
produces an endosome (Abdelhakim et al. 2014). After the viral particle is engulfed by the host cell, it 
enters the endosome, where the outer covering is broken down, and the inner core is released. The 
acidic surroundings of the endosome, which lead to structural changes in the virus particle, initiate this 
process (Louten 2016). Eleven double-stranded RNA sections comprising the viral genetic makeup are 
present in the released viral core (Christiaens et al. 2020). Viral enzymes subsequently perform 
transcription and replication of the viral RNA inside the host cell. As a result, additional viral genome 
copies and messenger RNA (mRNA) is produced (Te Velthuis et al. 2010). The machinery of the host cell 
translates the viral mRNA into viral proteins. The structural proteins that comprise the virus particle, 
the non-structural proteins required for virus replication, and the enzymes involved in RNA replication 
belong to these proteins (Malone et al. 2022). In the host cells cytoplasm, replicated viral RNA segments 
and newly synthesized viral proteins generate new virus particles (Chou et al. 2013). The pre-structural 
of the viral genome forms a full virus particle newly constructed virus particles undergo maturate 
undergoing which the virus particle's exterior protein layer is changed, and it acquires infectious 
properties (Novoa et al. 2005). The host cell allows the virus particles to release. This can occur through 
several methods, such as cell lysis, in which the host cell is ruptured, or a process known as budding, in 
which the virus particle is encapsulated by the host cell membrane and discharged without resulting in 
cell death (Fig. 2) (Nanbo et al. 2018). 
The released virus particles infecting additional host cells can continue the infectious cycle. Typically, the 
RV life cycle lasts ten to twelve hours, during which plenty of newly formed virus particles are produced. 
The sickness's large viral load and quick spread are attributed to this virus generation that occurs quickly. 
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7. DIFFERENT STRATEGIES TO CONTROL ROTAVIRUS 
 
Strategies for controlling and preventing RV infections are being developed. Vaccination is the major 
method of lessening the social and financial costs of RV infections. 
 
8. ROTAVIRUS VACCINES IN HUMAN USE 
 
Animal virus strains induce cross-neutralizing antibodies against human strains, whereas heterologous 
virus strains are greatly attenuated for humans (Schwartz et al. 2007). Some were selected because 
they are common in neonatal units, while others were weakened through repeated cell culture 
passages. Live vaccines are given orally in doses to imitate RV infections and promote immunity against 
different variations of antigens (Azevedo et al. 2013). Non-replicating vaccines are made up of sub-unit 
and inactivated vaccines. The monovalent, two-dose vaccine Rotarix is made by GlaxoSmithKline 
(Belgium) (Braeckman et al. 2012). A single G1P [8] strain was repeatedly transmitted on cell culture to 
reduce it. The vaccine is widely accessible and is recommended in 70% of countries where routine 
RA vaccination is practiced (Danziger‐Isakov et al. 2019). Table 1 shows the names of available vaccines, 
host and the efficacy.  
RotaTeq is a pentavalent 3-dose vaccine developed by Merck (USA). Each of the 5 resistant strains in the 
vaccine represents a different human neutralization antigen (Matthijnssens et al. 2012). Each resistant's 
backbone  genes are mostly  provided by the parental  strain, the bovine WC3,  and its original neutralizing  
 
Table 1: Vaccine names, host, strain, and efficacy against Rotavirus 

Vaccine Name Administration Strains Hosts Efficacy References 

RotaTeq Oral (liquid) G1, G2, G3, 
G4, P[8] 

Human-
bovine 

Approximately 85-98% against 
severe rotavirus gastroenteritis, 

Cortese and 
Parashar 2009; 
Nayak et al. 2019 

RotaShield Oral (liquid) G1, G2, G3, 
G4, G9, G10, 
P[8] 

Human-
bovine 

Approximately 49-68% against 
severe rotavirus gastroenteritis 

Glass et al. 2021 

BRV-PV (BRVAX) Oral (tablet) G1P[8] Human Approximately 67-87% against 
severe rotavirus gastroenteritis 

World Health 
Organization, 2020 

Rotarix Oral (liquid) G1P[8] Human  Approximately 85-98% against 
severe rotavirus gastroenteritis 

Grimwood and 
Bines 2007; Ella et 
al. 2019 

Rotavac Oral (liquid) G1P[8] Human-
bovine 

Approximately 55-64% against 
severe rotavirus gastroenteritis 

Burke et al. 2021 

Rotavin-M1 Oral (liquid) G1P[8] Human  Approximately 53-67% against 
severe rotavirus gastroenteritis 

Castellucci, 2017; 
Skansberg et al. 
2021 

Ervebo  Intramuscular N/A Hamster Approximately 97.5-100% in 
preventing Ebola virus infection 

Woolsey et al. 
2022 

RIX4414 Oral (liquid) G1P[8] Human-
bovine 

Approximately 85-98% against 
severe rotavirus gastroenteritis 

Grimwood and 
Bines 2007 

Lanzhou lamb-2 
rotavirus vaccine 

Oral (liquid) G10P[15] Lamb Approximately 80-85% against 
severe rotavirus gastroenteritis 

Carvalho  and Gill 
2018 

Rotasiil  Oral (liquid) G9P[11] Cow Approximately 53-67% against 
severe rotavirus gastroenteritis 

Castellucci 2017 

BRV-PV Oral (liquid or 
suspension) 

G1, G2, G3, 
G4 and G9 

Human 66.7% efficacy Folorunso and 
Sebolai 2020 
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Fig. 2: Mechanism of Rotavirus Disease (Retrieved from Biorender). 
 
antigens. The VP4 and VP7 are also detected (Doro et al. 2015). The Lanzhou Lamb RV vaccine was 
produced by Lanzhou Institute in China. This vaccine is monovalent and carries a G10P [15] rotavirus strain 
of an ovine origin (Li et al. 2018). Rotavac is a monovalent 3-dose vaccine and produced by Bharat Biotech 
in India. The vaccine contains a single human G9P [11] strain, which was discovered in an Indian youngster 
who was asymptomatic (Skansberg et al. 2021). After a Phase 3 trial showed a positive safety and efficacy 
profile, the vaccines were commercialized in 2014. A monovalent vaccine called Rotavin-M1 was 
developed at the center for research and production of vaccines and granted a license for Vietnam in 2007 
(Kirkwood et al. 2019).  
 
9. ROTAVIRUS VACCINES IN ANIMAL USE 
 
Animal immunization strategies differ from those used to prevent rotavirus infections in infants and young 
children (Dhama et al. 2009). In humans, the main goal is to prolong the active immunity induced by 
vaccination during the first few years of a child's life, when the risk of extreme infections is at its highest 
after the parental antibody level has decreased by the age of four to six months (Kinyanjui et al. 2015). RV 
primarily affects the offspring of animals and passive vaccination is the major treatment for animals. This 
principle of passive vaccination is based on parental antibodies that can cross the placenta or be released 
in colostrum and give kids temporary protective immunity against clinically evident RV infection (Vojtek et 
al. 2018). Both inactivated and live attenuated vaccinations can raise the antibody concentration in 
pregnant animals. These vaccinations are given late in pregnancy, and RA antigens are frequently included 
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in polyvalent vaccines containing antigens from other significant intestinal infections (Obaro et al. 2014). 
The USA has access to a live modified vaccine used to vaccinate young piglets (Tizard 2020) actively. 
 
10. RV VIRUS-LIKE PARTICLES 
 
Production of rotavirus virus-like particles (RV-VLPs) was 1st reported in 1980. The formation of VLPs that 
can be easily isolated was subsequently achieved by co-expressing the VP6 and VP2 proteins in insect 
and mammalian cells (Kushnir et al. 2012). The expression of VP2 itself has been demonstrated to produce 
pseudo-core-like particles. RV- VLPs can significantly increase immune responses regardless of the method 
of vaccination used (intraperitoneal, intramuscular, intranasal, parenteral, intrarectal, and oral) (Marashi 
et al. 2014). The following factors make rotavirus VLPs a promising candidate and an alternative to 
conventional vaccines, they are effective immunogens and cannot transform into infectious forms because 
they lack genetic material, handling is risk-free, the viral proteins remain in their natural approval, they 
can be combined with an adjuvant to increase immunogenicity and large-scale recombinant vaccines for 
new serotype can be produced (Jere et al. 2014). Furthermore, a lower antigen can elicit the same immune 
response compared to subunit vaccinations since VLPs are similar to the parent virus (Noad and Roy 2003). 
 

11. RECENT DEVELOPMENTS IN RV VIRUS-LIKE PARTICLES TECHNOLOGY 
 

Several groups are currently focusing on developing combinatorial vaccines to improve their 
immunogenicity against different infections following the success of RV-VLP manufacturing systems 
(Changotra and Vij 2017). A potential combination vaccination against acute adolescent gastroenteritis 
that combines recombinant polymeric RV VP6 protein and norovirus VLPs generated in baculovirus-insect 
cell production systems (Blazevic et al. 2016). Additionally, it has been demonstrated that the RV VP6 
protein affects the activation and maturation of antigen-presenting cells in vitro and has an adjuvant 
impact on norovirus-specific antibody reactions in vivo (Malm et al. 2017). None of the RV-VLPs have been 
tried on humans. However, gnotobiotic pigs, mice, and rabbits have been used to assess the RV-VLPs' 
immunogenicity, effectiveness, and safety (Yuan et al. 2000). Two VLP-based RV subunit vaccines, however, 
are made up of truncated VP8 in norovirus P particles and VP 2/6/7 and VP 2/4/6/7 in VP-based vaccines 
that are now in the preclinical stage of development (Heinimäki et al. 2020). 
 
12. OTHER STRATEGIES 
 
The challenges of removing rotaviruses from hands or infected surfaces must be addressed by rotavirus 
control techniques (Greenberg and Estes 2009). Rotaviruses are not easily destroyed by the chemical 
antiseptics and disinfectants frequently employed in hospitals and other institutions (Todd et al. 2010). 
Effective disinfectants should be used to clean environmental surfaces. Quaternary ammonium 
compounds and chlorhexidine gluconate, the active component of Hibiclens, should be used in 
formulations with a high alcohol content to become active against rotavirus (Dennehy, 2000). Rotavirus 
becomes inactive by quarternary ammonium compounds that contain >40% isopropyl alcohol by volume 
or formulations of chlorhexidine gluconate 0.5% w/v in 70% ethanol by volume (Hibitane in ethanol) 
(Rotter 2004). When applied to inanimate surfaces that had been experimentally contaminated with an 
infectious form of the RV, Lysol Brand Disinfectant Spray (79% ethyl alcohol, 0.1% o-phenyl phenol) 
effectively prevented the spread of rotavirus infection to humans (Boussettine et al. 2020). RV cannot be 
removed from hands using regular soap, and handwashing increases the risk of the virus spreading to 
more skin surfaces. Use a waterless hand cleaner with alcohol when washing your hands before and after 
coming into touch with sick kids (Bloomfield et al. 2007). 
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13. CONCLUSION 
 
It is concluded that reducing the significant negative effects of rotavirus infection on public health, 
particularly in infants and young children, depends on controlling the infection. Vaccination remains the 
basis of prevention with multiple efficient vaccinations, including RotaTeq and Rotarix. The production of 
RV-VLPs shows promise as a candidate for a future vaccine. RV-VLPs greater serotype coverage and viral 
mimicry stimulate humoral and cellular immune responses. To further control and lessen the effects of RV 
infection globally, a multifaceted strategy involving vaccination, better hygiene habits, and continued 
research into new vaccine technologies like RV-VLPs is crucial. 
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