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ABSTRACT  
Ebola virus responsible for hemorrhagic fever, belongs to filoviridae and fall in biosafety level-4 
pathogen. The genome is linear, single stranded RNA, non-segmented and 19kb long. The genome 
encodes seven important structural proteins and all have essential role in virus replication. These 
structural proteins are nucleoprotein (NP), Large Protein (L Protein), Viral Protein 35 (VP35), Viral 
protein 40 (VP40), Glycoprotein (GP), Viral Protein 30 (VP30), and Viral Protein 24 (VP24).  The 
replicative cycle of Ebola virus is crucial at the point of attachment and entry, while VP30 is involved 
in transcription. Once the virus enter into the cells, VP30 regulate the transcription and replication of 
viral genome. The phosphorylated VP30 block viral transcription because of the weakened interaction 
of promoter cofactor VP35. Several studies on recombinant EBOV and wild type EBOV have shown 
that VP30 containing serine 29 residue has major role in initiation of primary and secondary 
transcription. This difference is explained by alterations in the balance between the transcription and 
replication processes and appear to be associated with the state of VP30 phosphorylation. When 
replication have completed, newly synthesize genome and proteins are carried at site of budding 
where all these building blocks of virus come together to form virions and then release from the cell 
to infect other cells. 
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1. INTRODUCTION  
Ebola virus, the causative agent of Ebola hemorrhagic fever, is a well-known member of filoviridae 
family. Because the form of the virion similar to a twisted thread when examined through an electron 
microscope, the family name Filoviridae is derived from the Latin word "filum," meaning thread (Ascenzi 
et al. 2008; Feldman et al. 2013). The Filoviridae family, which belongs to the order Mononegavirales, 
comprises three genera. 1) Ebola virus 2) Marburg virus 3) Cueva virus (Jun et al. 2015; Burk et al. 2016). 
All of these have ssRNA, enveloped and a distinctive heterogeneous filamentous (filo; Thread) form 
(Slenczka 1999). The genome is uniformly 80 nm in diameter and ranges in length from 970nm to 1200 
nm. A single molecule of linear, non-segmented, ssRNA, measuring about 19 kilobases (kb), is present in 
the virion core (Geisbert et al. 1995). Genus Ebola virus (EBOV) has five different distinct species: 1) 
Virus of Zaire (Zaire Ebola Virus); 2) Sudan’s virus (Sudan Ebola Virus); 3) Bundibugyo virus (Bundibugyo 
Ebola virus); 4) Forest virus (Taï Forest Ebola Virus); 5) virus of Ruston (Reston Ebola virus) (Schieffelin et 
al. 2014). The first Ebola Virus Epidemic (EVD) reported in Zaire in 1976, which rebaptized to Democratic 
Republic of Congo, near the Ebola River (Nicastri et al. 2019). In 1976, epidemics of viral hemorrhagic 
fever (HF) were found to be caused by EBOV in the Congo and Sudan (Emond et al. 1977). EBOV caused 
disease known as EVD or Ebola Virus Disease, which is rare but deadly (with a mortality rate more than 
90%) for mammals and non-human primates (Weingartl et al. 2013; Feldmann and Feldmann 2014). 
The Ebola virus is categorized as a category A list pathogen and a biosafety level 4 pathogen. After an 
incubation period of 4 to 10 days, illness symptoms start to manifest. There are currently no authorized 
alternatives available for either postexposure prophylaxis or therapy. Virions are sensitive to lipid 
solvents, Photo induced alkylating probe 1,5 iodonaphthylazide, phenolic disinfectants, irradiations and 
formalin treatment (Mitchell et al. 1984; Warfield et al. 2007). 
The major routes of transmission during an outbreak are nauseating humans or interaction with human 
bodies, although the natural reservoir of the virus is most likely fruit bats that are asymptomatic and 
infected with filoviruses, which have extremely high genetic diversity (Towner et al. 2009; Carroll et al. 
2013). Other possible transmission methods of virus (present in saliva, stool, semen, body fluids) 
including direct touch, fomite, vaporizer and droplets (Bausch et al. 2007).  
The EBOV structure plays vital act in peculiar infection. RNA based genome of Ebola virus encodes seven 
structural proteins from leader 3’ to the trailer 5’: 1) Nucleoprotein (NP); 2) Virion protein 35 (VP35); 3) VP40; 
4) Glycoprotein (GP); 5) VP30; 6) VP24; 7) RNA- dependent RNA polymerase (L) (Hoenen et al. 2006; Martin 
et al. 2016). All the proteins have crucial role in virus replication and transcription as mention in Table 1. 
 
Table 1: Role of structural genes in virus replication and pathogenesis 

Proteins Main Function 

NP Necessary for the development of nucleocapsid-like structures that encapsulates the viral genome, plays 
central role in virus replication and protects mRNA from destruction (Noda et al. 2005; Kirchdoerfer et al. 
2015). 

L Participating in transcription, regulation of viral genome and mRNA editing (Volchov et al. 1999; Ayub et 
al. 2016). 

VP35 Function as an innate immune antagonist; impairs dendritic cell maturation and inhibits antiviral effects 
by blocking protein kinase R (Basler et al. 2002). 

VP40 Necessary for viral assembly at plasma membrane interlinked with viral and cellular component and 
budding from the host cell (Adu-Gyamfi et al. 2013). 

GP 1,2 Virus attachment and entry; GP1 make a link of cell surface receptors with viral particles; GP2 consist of a 
fusion loop critical for membrane fusion (Volchkov et al. 1998). 

VP30 Initiates transcription; involved in packaging of ssRNA and nucleocapsid assembly (Muhlberger et al. 1999). 
VP24 Inhibit IFN- 𝛼/𝛽 and IFN-𝛾 signaling through interaction with importins which is necessary for functional 

nucleocapsid (Han et al. 2003; Noda et al. 2007) 
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2. REPLICATIVE CYCLE 
 
Similar to most negative stranded RNA viruses, the replication cycle of Ebola virus follows a basic similar 
pattern. A generalized sequence of the replicative stages is as follows: 
 
3. ATTACHMENT AND ENTRY 
 
The broad range of mammalian primary cells and cell lines that filoviruses can infect makes it 
challenging to pinpoint the specific cellular proteins that play a crucial role in viral attachment. After 
gaining entry parentally through the skin and mucous membrane, Ebola virus attaches to host surface 
though specific interaction among viral proteins and receptors present on the host’s cell surface. The 
surface of Ebola virus is covered with glycoproteins (Chan et al. 2001) Earlier research has established 
that the interaction between the viral envelope GP1 protein and specific cell surface factors facilitates 
the attachment of the virus to its target cells (Chan et al. 2001). GP1 consists of three characteristic 
domains: 1. Receptor binding domain; 2. Glycan cap; 3. Heavily O-linked glycosylated mucin-like domain. 
In mature GP1, receptor binding domain exists along with additional regions that engage with one or 
multiple receptors located on the surface cells (Kuhn et al. 2006). Although the EBOV mucin domain is 
not essential for virus entry (Yang et al. 2000; Jeffers et al. 2002), several roles have been proposed for 
this domain. The X-ray crystallography analysis revealed that the receptor-binding domain is encircled 
by the glycosylated glycan cap and MLD (membrane-proximal external region), forming a protective 
layer consisting of complex oligosaccharides (Beniac and Booth 2017). These include human folate 
receptors, β1 integrins, CLECs (C-type lectins) that specifically bind to glycans on the viral glycoprotein, 
and phosphatidylserine (PtdSer) receptors that cooperate with the viral envelope. These molecules play 
crucial roles in facilitating the entry and infection process of EBOV into host cells (Moller-Tank et al. 
2013). The C-type lectin family consists of several important members, including DC-SIGN (dendritic cell 
specific intercellular adhesion molecule 3 grabbing non-integrin) and L-SIGN (liver/lymph node-specific 
ICAM-3 grabbing non-integrin), along with human macrophage galactose lectin. These lectins play 
crucial roles in various biological processes, such as cell adhesion and immune response regulation 
(Alvarez et al. 2002). Recently, a significant role has been attributed to cellular receptors that interact 
with PtdSer found in viral envelope. These receptors include TIM-1 and TIM-4, which relate to the T-cell 
immunoglobulin and mucin domain (TIM) family, as well as protein complexes comprising Gas6 or 
Protein S along with the TAM receptor family of tyrosine kinases (Tyro3, Axl, and Mer). It is well 
established that PtdSer is present in these interactions (Kondratowicz et al. 2011). 
β1 integrins are proteins responsible for attaching cells to the extracellular matrix. The Tyro3 protein 
kinase (TAM) family consists of Axl, Dtk, and Mer receptors, which are present on the cell's outer 
membrane in various cell types. When these receptors are activated, they promote cell migration, 
division, and viability, leading to enhanced cellular functions (Linger et al. 2008). Additionally, it has 
been shown that folate receptor serves as a coreceptor for Ebola virus and Marburg virus lycol protein 
making it easier for the viruses to connect to the cells that are expressing their glycoproteins and enter 
cells more quickly (Simmons et al. 2003; Sinn et al. 2003). 
Upon binding to receptor, Ebola Virus move in the host cells through three mechanisms: (a) 
Macropinocytosis (Quinn et al. 2009), (b) Clathrin-mediated endocytosis (Bhattacharyya et al. 2011; 
Bhattacharyya et al. 2010) and (c) caveolin-mediated endocytosis. At present, micropinocytosis is 
supposed to be the chief endorsement process (Saeed et al. 2010; Nanbo et al. 2010; Mulherkar et 
al. 2011). 



ZOONOSIS  
 

506 
 

Macropinocytosis, observed in certain immune cells like dendritic cells and macrophages, is 
distinguished by actin-driven membrane ruffling (Jones 2007; Kerr and Teasdale 2009; Mercer and 
Helenius 2009). Macropinocytosis is linked to the activation of Rho GTPases, such as Rac1 and 
Cdc42, which trigger the development of membrane ruffles through actin polymerization. For 
instance, in Vero cells, the entry is mediated by T-cell immune globulin and mucin domain 1 (TIM 
1) and involves the activation of the Phosphoinositide 3-kinase signaling pathway. On the other 
hand, SNB19 cells require TAM tyrosine kinase and phospholipase signaling for viral entry (Liu et al. 
2020). 
 
4. FUSION AND UNCOATING 
 
After endocytosis, the subsequent stages involve viral membrane fusion and uncoating where the viral 
membrane merges with membrane bound vesicles to release viral genetic material in cytoplasm of 

host cell (Martin et al. 2016). Virion envelopes of enveloped viruses join with the cell's outer 

membrane during a process of attachment known as fusion (Levinson 2008). EBOV produced three 
discrete proteins from glycoprotein gene that are, glycoprotein, soluble glycoprotein, and small 
soluble glycoprotein. whose appearance is influenced, in part, by transcription excision at a specific 
site containing seven remains of uridine (Volchkov et al. 1995; Sanchez et al. 1996; Mehedi et al. 
2011). Crucially, membrane fusion and receptor binding are accomplished by the same 
transmembrane GP. Within trans-Golgi network (TGN), host cell proteases, including furine, cleave 
EBOV GP to produce the two components glycoproteins that are GP1 and GP2 (Volchkov et al. 1998; 
Jeffers et al. 2002). A glycoprotein core, a receptor-binding domain, glycosyl capped, and a mucin-like 
domain are all components of the GP1 subunit. The GP2 subunit has a cytoplasmic tail, a 
transmembrane region, heptad repeats 1 and 2, and an internal fusion loop (Sanchez et al. 1996). GP1 
plays a crucial role in attaching through receptor-binding site in the host cell (Kuhn et al. 2006). On 
the other hand, GP2 is responsible for facilitating host cell membrane and virus membrane fusion 
(Malashkevich et al. 1999). Additionally, the internal fusion loop of GP2 and glycan cap of GP1 may 

interact to limiting accessibility of fusion peptide and preventing from early fusion events 
(Weissenhorn et al. 1998). Low pH conditions are required for conformational alternation in the 
fusion loop that encourage fusion (Gregory et al. 2011). 
After the virion has been internalized by micropinocytosis and has moved along the endocytic 
pathways, the receptor binding site is revealed by the host endosomal cysteine, and cathepsins 
proteases (low PH-dependent) such as L and B Proteases cleaves the GP1 and GP2 mucin-like 
domains and glycan capped (Gong et al. 2016). For the virus to connect with the Niemann-Pick C1 
obligatory host receptor and transporter cholesterol, this type of proteolysis of EBOV GP1 is 
necessary (Carette et al. 2011). NPC1 is a thirteen-pass transmembrane protein that is found in 
delayed endosomes and is thought to be involved in the transport of lysosomal cholesterol. NPC1 is a 
crucial viral receptor and a host factor for the entry, infection, and pathogenesis of filoviruses ( Miller 
et al. 2012). It has six small cytoplasmic loops, a cytoplasmic tail, 4 small and 3 large luminal loops, 
and 13 transmembrane domains. The sterol-sensing domain is housed within NPC1 transmembrane 
regions (Davies and Ioannou 2000). With the aid of a soluble NPC2 protein, it helps cholesterol exit 
late endosomes so that it can be redistributed to cellular membranes including the endoplasmic 
reticulum and plasma membrane (Sleat et al. 2004). The late endosome/early lysosome's NPC1 
receptor and GP1,2 receptor binding site interact to cause conformational modification in GP1 and 
GP2, which guide the merging of the virion and endosomal membranes and releases viral genome in 
cytoplasm (Gong et al. 2016).  
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5. TRANSCRIPTION AND REPLICATION 
 

The transcription of Ebola virus starts with the synthesis of viral mRNA genome from single stranded and 
negative sense RNA genome by formation of complementary sequence to existing negative sense 
sequence. Though the genome contains many nucleotides roughly estimated between 18,000 to 19,000 
that encodes for many crucial proteins. Majorly Ebola virus has seven genes that code for many crucial 
proteins that play significant role in viral life cycle. Due to the diverse and complicated life cycle of Ebola 
virus, many factors including viral and host, help virus to evade immune system and to manipulate the 
immune response. The seven genes code for the proteins include nucleoproteins, viral protein 35, viral 
protein 40, viral protein 30, viral protein 24, glycoprotein and RNA dependent RNA polymerase(L) 
(Hoenen et al. 2006; Martin et al. 2016.). NP encloses a viral genome which proceed as a model for viral 
RNA transcription and replication (Ruigrok et al. 2011). Once the virus get entry into the cell, the 
replicative cycle begins within the host cell cytoplasm (Fig. 1). There also formed secondary sites, 
termed as inclusion bodies which are formed by the accumulation of NP and other vial proteins, serve as 
other site of transcription and replication of viral genome (Hoenen et al. 2012; Nanbo et al. 2013; Lier et 
al. 2017). NP and all its associated proteins play significant role in primary and secondary transcription of 
viral genome. Transcription starts at the promoter site of viral genome that leads to the transcription of 
gene from start (Weik et al. 2005). When ample number of proteins have been synthesized from newly 
made RNA transcript, it leads to the replication of filoviral genome and antigenome. The formation of 
more and more viral genome act as a template for the formation of more viral protein (referred as 
secondary transcription). The pre translational editing of EBOV GP gene result into three transcript, pre-
sGP, pre-GP, and pre-ssGP, these transcripts respectively translated into pre-sGP pre-GP and pre-ssGP. 
sGP is encoded by the GP gene of all five species of Ebolavirus. It is initially synthesized as pre-sGP, a 
golgi-Specific precursor, which undergoes post-translational proteolytic cleavage at its C-terminus by 
cellular proteases, such as furin, to yield he mature form of the protein. The post translational editing 
involves cleavage of pre-sGP by furin into sGP and Δ-peptide (Delta peptides of filovirus are actually non-
structural peptides and are termed as viroporins, major role in viral pathology) and cleaving Pre-GP 
forms GP post-translationally into GP1 and GP2 subunits (Sanchez et al. 1998; Volchkov et al. 1998; 
Jeffers et al. 2002). The mechanism of transcription and replication go side by side, but still the actual 
phenomenon of regulation of transcription and replication is unclear.  
The protein named VP30 has major impact on transcription and replication of EBOV genome (Modrof 
et al. 2002; Martinez et al. 2008). Phosphorylation of VP30 results in the blockage of transcription and 
it is due to the weakened interaction of polymerase cofactor VP35. Non phosphorylated VP30 in 
association with the polymerase cofactor 35 and NP regulate the transcription. The VP30 
phosphorylation occurs at six N- proximal serine residue (S29-S31, S42, S44, and S46) and at threonine 
143 and 146 (Modrof et al. 2002.; Ilinykh et al. 2014). By checking the mutation at these residual 
points by alanine which shows up active transcription and aspartate with strong phosphorylated 
character shows up defective transcription (Elliott et al. 1985; Modrof et al. 2002; Martinez et al. 
2008), it shows the actual behavior of phosphorylation towards viral protein transcription. The non-
phosphorylated and weak phosphorylation of VP30 show up viral transcription along with replication. 
Current researches have shown that association in phosphorylated VP30 and polymerase complex 
ceases the transcription complex and favors the easy access of replicase complex to NP -RNA template 
(Martinez et al. 2011; Biedenkopf et al. 2013). Only dephosphorylated VP30 mediate viral 
transcription (referred as transcription activator). Several studies on recombinant EBOV and wild type 
EBOV have shown that VP30 containing serine 29 residue has major role in initiation of primary and 
secondary transcription (Elliott et al. 1985; Modrof et al. 2002; Modrof et al. 2003; Martinez et al. 
2008; Biedenkopf et al. 2016).  
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Fig. 1: Replicative cycle of Ebola Virus. Arrows represents the steps involved in Ebola virus replication. Virus 
attachment to cell surface receptors; Gains entry, Uncoat and fuse with membrane. Replication of genome and viral 
protein and after assembly and budding release a competent virus from cell. 
 
Some previous work has found two cellular phosphatases i.e., PP1 and PP2A. PP1 and PP2A belong to 
the phosphoprotein phosphatase (PPP) superfamily. These phosphatases are important for 
dephosphorylation of VP30 which is mediated by NP (Modrof et al. 2002; Ilinykh et al. 2014; Lier et al. 
2017). NP recruits the cellular phosphatase PP2A and VP30 in the viral inclusion bodies via some viral 
motifs. The degree of proximity between the VP30 and PP2A determines the efficient 
dephosphorylation of VP30 (Kirchdoerfer et al. 2016; Kruse et al. 2018).  
 
6. ASSEMBLY AND BUDDING 
 
When replication have completed, freshly created proteins and RNA of genome are carried at site of 
budding, where all these building blocks of virus come together to form virions (Harty et al. 2000; 
Martin-Serrano et al. 2001; Bavari et al. 2002; Timmins et al. 2003). Despite the few available reading 
frames for the Ebola virus, little is understood about viral assembly and the regulation of virus 
replication. According to some research, new formed bits of virus are gathered and budded at cell 
membrane, whereas viral duplication occurs in the cytoplasm (Feldmann et al. 1996, 1999). 
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The production of virus capsid with enclosed NA (cylinder shaped duct made up of associated NPNTDs 
with lumps), which amass in the area around the nucleus and transferred to the burgeoning sites at the 
cell membrane, is the first step in assembly of viral particles (Beniac et al. 2012; Bharat et al. 2012; Wan 
et al. 2017). Different functions in viral assembly and budding are played by Virus protein 40, 
Glycoprotein and NA complexes, and the slight grid protein (VP24) of the Ebola virus (Harty et al. 2000; 
Bavari et al. 2002; Han et al. 2003). 
 
6.1. ROLE OF THE GLYCOPROTEIN 
 
Glycoprotein produced by endoplasmic reticulum is translated at ER-bound ribosomes (Geisbert et al. 
1995; Kolesnikova et al. 2000; Mittler et al. 2013), whereas all other virus-related proteins are decoded 
at open ribosomes in the cytosol. Acylation, oglycosylation, and ripening of N- linked glycans are all 
steps in processing of precursor GP before furin's proteolytic cleavage (IIto et al. 2001; Ji et al. 2005; 
Johnson et al. 2006). Another posttranslational alteration of viral GP, known as acylation, is essential for 
particle production, including virus assembly and budding. Following those procedures, VP40 and GP 
come across in the late endosome for assembly and budding (Neil et al. 2008). The Ebola virus is better 
able to emerge from these specialized microdomains when GP is localized to lipid raft domains (Bavari 
et al. 2002). 
 
6.2. THE FUNCTION OF SLIGHT GRID VP24 PROTEIN 
 
The function of VP24 has been hypothesized to involve assembly, budding, and, most recently, effective 
capsids with enclosed NA (nucleic acid) aggregation (Huang et al. 2002; Han et al. 2003). The number of 
released virions decreased when VP24 RNA was silenced, but viral transcription and duplication were 
unaffected (Huang et al. 2002). 
 
6.3. ROLE OF THE NP PROTEIN 
 
Nucleoproteins interactions with eachother and with RNA are carried by the hydrophobic amino group, 
end of the NP protein, whereas the hydrophilic Carboxyl end undergoes a change during the NP-VP40 
collaboration (Mateo et al. 2010; Garcia-Dorival et al. 2016). 
 
6.4. NP AND VP40 INTERACTION DURING THE FORMATION OF VP40-INDUCED VLPS 
 
The sandwich structure of the Ebola virus protein VP40 consists of two structurally related realms 
(Dessen et al. 2000). The inhibition of viral transcription and replication through interactions between the 
matrix protein VP40 and NP may be accomplished by partial capsids with enclosed NA abridgment, while 
these interactions also promote NC envelopment at cell membrane and budding (Dolnik et al. 2010; 
Hoenen et al. 2010; Bharat et al. 2012; Kolesnikova et al. 2012; Wu et al. 2020). Before NP oligomerizes 
and the viral RNA is encapsidated concurrently with replication, a free amino group peptide of VP35 
keeps nucleoprotein in a monomeric form (Kirchdoerfer et al.2015; Leung et al. 2015; Liu et al. 2017). 
 
6.5. MICROTUBULES ARE REQUIRED FOR VLP BUDDING 
 
EBV uses processes based on microtubules to mediate within cell conveyance of NCs to cell membrane 
and their integration into virions (Greber and Way 2006). VP40 facilitates the association of the Ebola 
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virus with microtubules. NP comes together to create helical tubes and then joins forces with VP35 and 
VP24 to form a nucleocapsid-like structure, after forming NC like structure, they are transferred at cell 
membrane by means of tubulin polymers and interrelates with VP40 to be integrated into virions (Noda 
et al. 2006; Baker et al. 2016).  
 
6.6. VIRAL PROTEIN 40 IS ESSENTIAL FOR VIRION AMALGAMATION AND THE CONVEYANCE OF NC-LIKE 
STRUCTURES 
 
The Ebola virus's most prevalent virion protein, VP40, is found underneath the envelop and is important 
for competent virus release (Harty et al. 2000; Jasenosky et al. 2001; Timmins et al. 2001). The free 
amino group and carboxyl group realms of VP40 have a distinct folding pattern (Bornholdt et al. 2013), 
while the Carboxyl side realm of VP 40 is required for membrane contact, the amino group region is 
sufficient for oligomerization (Ruigrok et al. 2000). The presence of late realm sequences at the amino 
group side of VP40 including Tsg101 and Vps4 have been found to interact with the components of cells 
and supports the involvement of VP40 in budding (Harty et al. 2000; Martin-Serrano et al. 2001; Licata et 
al.2003; Timmins et al. 2003; Yasuda et al. 2003). For a complete virus to be released, cell collaboration 
between VP40 and inner leaflet also happens as VP40 electrostatic and hydrophobic components are 
linked to plasma membrane PS which controls the location and oligomerization of VP40 on inner leaflet 
of plasma membrane (Moller-Tank et al. 2013; Moller-Tank et al. 2014) (Fig. 1). 
Another important mechanism in Fledgling is the interaction between GP2 and small glycosylated 
membrane protein, which can cause an entire virus particle preservation on the cell membrane and is 
triggered by IFN-α (Neil et al. 2008; Lopez et al. 2010; NH Vande Burgt et al. 2015). A hydrophobic 
membrane spanning realm and glycosyl cap found in GP2 are thought to contribute significantly to 
tetherin antagonism (Han et al. 2003; Gnirss et al. 2014). 
Since interactions with host cell components are necessary to facilitate the long filovirus NC's 
movement, it cannot get to the budding site by diffusion alone. An actin cytoskeleton drives the 
trafficking of filovirus NCs (Licata et al. 2004; Schudt et al. 2013, 2015; Takamatsu et al. 2018). Actin 
comet tails on one side of moving NCs and NCLS indicate a transport mechanism based on the 
polymerization of branching actin filaments (Welch et al. 2013; Mueller et al. 2014). Inside IBs, 
transport-capable NCs made up of all the NC proteins are produced. Actin appendages are created at 1 
side of the NC in the cytosol, that propels their movement outside the IBs. Maturing of viruses occurs 
mostly in long, slender cellular protrusions after reaching the cell membrane, where myosin 10 may 
facilitate the movement of capsids with enclosed NA along parallel microfilaments. The favored budding 
sites for filoviruses are enriched filopodia (Kolesnikova et al. 2007; Schudt et al. 2013. 2015; Dolnik et al. 
2014). Strongly enhancing NCLS recruitment into filopodia is EBOV VP40 (Takamatsu et al. 2018). Long, 
thin cellular protrusions known as filopodia are distinctive parallel microfilaments which are cross-linked 
by fascin (Bornholdt et al. 2013). 
In addition to the cell membrane, the internal membranes of MVBs and late endosomes have also been 
found to host filoviral maturing (Silvestri et al. 2007). Any of two alternative ways of viral budding can 
occur in virus-infected cells that had numerous virions on their surface. Although numerous virions can 
emerge horizontally through the cell membrane, filamentous virions are discharged vertically from the 
cell surface (Roberts and Compans 1998; Brown et al. 2002; Simpson-Holley et al. 2002).  
 
7. CONCLUSION 
 

In conclusion, tremendous advancements have been achieved in the process of Ebola Virus replicative 
cycles, but still numerous areas that need more clarification. 
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