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ABSTRACT  
In just two hundred years the prevalence of infectious disease started soaring as new modes of travelling 
were invented. Now people could one place to another quickly carrying several kinds of disease with them. 
With the advent of diseases, life expectancy was reduced to around 35 years and death was rampant. 
These dire circumstances led to the discovery of antibiotics that became the main weapon of mankind 
against infectious diseases post-infection. Humanity was saved from the looming threat of constant 
epidemics and reduced life expectancy. Soon mankind began to thrive and people started increasing the 
use of antibiotics to battle all kinds of diseases.  With overuse came the problem of misuse of antibiotics. 
People soon started using antibiotics without proper protocols and dosing regimens. This malpractice 
soon resulted in the emergence of a capability in bacteria to nullify the effects of antibiotics. The antibiotic 
resistance meant that the easily curable diseases once again became untreatable maladies. One such 
bacteria that gained antibiotic resistance was Staphylococcus aureus. S. aureus gained resistance against 
the methicillin group of antibiotics as they were commonly used against it. After that vancomycin became 
the drug of choice against methicillin-resistant S. aureus. Soon, people started misusing vancomycin too 
which quickly led to the development of vancomycin-resistant S. aureus (VRSA). VRSA were usually multi-
drug resistant bacteria that effectively rendered, many of the antibiotics being used against them, 
ineffective. These conditions forced the researchers to look for alternative medication modes and 
techniques for countering antibiotic resistance.  
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1. INTRODUCTION  
In the groups of Gram-positive cocci Staphylococcus aureus is an organism often linked with 
gastroenteritis that occurs due to consumption of contaminated food products like milk (Ayele et al. 2017) 
and shrimp. The phenomenon of multidrug resistance in food-borne bacteria is a concern of worldwide 
occurrence (Song et al. 2015). S. aureus and several other bacteria resistant to beta-lactam drugs have 
been isolated from milk products (Ayele et al. 2017) and shrimp (Arfatahery et al. 2016). Out of many 
factors acting in the selection of drug-resistant bacterial pathogens, some important ones are misuse of 
antibiotics and improper disposal of antibiotics in the environment (Cheng et al. 2015; Roca et al. 2015). 
Thus, the improper use of antimicrobial drugs in marine (di Cesare et al. 2013; Tajbakhsh et al. 2015) and 
livestock (Yang et al. 2017a) animals ultimately leads to the production of resistant bacterial species. This 
rise in turn results in increased levels of contamination in foods obtained from animal sources. An 
alternative tactic to control the rise of antibiotic-resistant bacteria has been suggested. This proposal 
emphasizes the research on antimicrobial compounds present in plants (Atanasov et al. 2015).  
After the identification and reporting of Staphylococcus aureus with Methicillin-Resistant also known as 
(MRSA) in the 1960s physicians started using vancomycin (VA) as the drug of choice against it. However, 
soon reports started coming out about the occurrence of Staphylococcus aureus with Vancomycin-
Resistant also known as (VRSA) (Alakeel et al. 2022; Saber et al. 2022; Pinheiro et al. 2023).  
The isolates of S. aureus from Saudi Arabia were also tested positive for resistance against several drugs 
of antibiotic nature including vancomycin. This discovery forced the scientists to begin their search for 
new alternatives against the Vancomycin-resistant Staphylococcus aureus (VRSA). One such alternative 
option was the use of medicinal plants. Since ancient times, plant extracts have been used for the 
treatment of diseases caused by bacteria. Now issues like the increase in bacterial resistance against 
conventional antimicrobial drugs, necessitate the shift of attention to medicinal herbs. A commonly 
known plant Ziziphus nummularia, also known as sidr in Arabic is potential is a potential candidate for 
battling antibiotic resistance. It is a branched thorny bush. This plant is native to Saudi Arabian land and 
it grows in arid, dry regions (Mesmar et al. 2022). Several parts of Ziziphus nummularia can be used for 
the treatment of a broad range of diseases. Recently it has gained scientific approval for possessing 
beneficial bioactive substances that act as antimicrobial, antioxidant, antitumor, anti-hypotensive, anti-
inflammatory, anti-hypoglycaemic, liver protective and immune system stimulants (Mustafa et al. 2019; 
Khurshid et al. 2022). 
 
2. Healthcare Challenges against the Issues of Staphylococcus aureus  
 
One of the more severe problems concerning infection of S. aureus is the outbreak of infections of drug-
resistant pathogens and their impact on global human health. The emergence of MRSA had a major effect 
on the settlements of hospitals that later turned into community-based infections in a particular trend. It 
mostly happens in people who lack proper medical attention (See et al. 2017; Rowe et al. 2021). In a 
cascade-effect manner, MRSA has started showing resistance to an extended range of antibiotics belonging 
to the beta-lactam group (ESBL). This group includes the most commonly used antibiotics like penicillins, 
carbapenems and cephalosporins (Rasheed and Hussein 2021). 80% of the mortality rate recorded in 
hospitalized people with MRSA infection is due to the formation of biofilm by invading bacteria (Alonso et 
al. 2022). The recurrence of MRSA infections can be of any type ranging from cystic fibrosis disorders, soft 
tissue and skin infections, endocarditis, bacteremia, UTIs, colonization of nares and osteomyelitis (Rowe 
et al. 2021). MRSA is also a major pathogen of the infection associated with implants (Khatoon et al. 2018). 
The typical infections caused by S. aureus include issues of soft tissues and skin infections. These infections 
may also include impetigo and purulent cellulitis (Cruz et al. 2021). Occurrence of impetigo is common in 
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infections caused by Staphylococcus. It can be specifically seen at the extremities in the crusty lesions 
(Alegre et al. 2016). The toxic shock syndrome toxin produced by Staphylococcus can lead to the 
occurrence of toxic shock syndrome (Wang et al. 2007). These infections mainly happen due to the use of 
absorbable tampons. It involves severe clinical symptoms such as multi-organ coupled septic shock. With 
the consideration in mind that the important part of S. aureus is the resident of the nasal region in humans, 
Nurjadi et al. (Nurjadi et al. 2015) its connection between pvl (Panton-Valentine leukocidin) can underline, 
which is mostly discovered in intercontinental travellers, and the genes linked with the harshness of soft 
tissue and skin infections are lukL/lukS genes. MRSA has been identified as the main cause of health-care 
setting-associated pneumonia in the statistical analysis performed by Walter et al. (Walter et al. 2018) in 
the countries of Europe. After Pseudomonas aeruginosa, the second major colonizing bacteria of the lungs 
is S. aureus, especially in people suffering from cystic fibrosis. S. aureus affects the regulator protein for 
transmembrane conductance found in the epithelium layer of cystic fibrosis. This effect then causes the 
mucus to accumulate in the respiratory tract. The mucus engorgement leads to difficulty in breathing and 
ultimately to the disease and fatality of patients with cystic fibrosis (Stauffer 2017). The main sources for 
getting infected with nosocomial pneumonia are the endotracheal tubes and overuse of intensive care 
unit ventilators for the patients which may also lead to infection with biofilm-forming bacteria (Bauer et 
al. 2002). Medical equipment like pacemakers, defibrillators, and heart valve implants are the sources of 
cardiovascular infections of S. aureus that can usually lead to early-onset endocarditis due to prosthetic 
valves (Viola and Darouiche 2011). 
The most significant cases of increased mortality by endocarditis and sepsis were observed in several types 
of vascular catheters (Alonso et al. 2022). The clumping factors (Clfs) are fibrinogen-binding proteins such 
as ClfA and ClfB, along with SdrE, which induce the aggregation of platelets. This aggregation then leads 
to endocarditis (O´Brien et al. 2002). Past studies have discovered S. aureus as the second major etiologic 
agent of shunt infection (Bhatia et al. 2017; Yakut et al. 2018). Intracranial pressure and meningeal 
irritation were the notable clinical signs seen during cerebrospinal fluid shunt infections (Kulkarni et al. 
2001). An elevated risk of shunt infection was seen in people facing spinal fluid leakage post-surgery of 
shunt reimplantation. Additionally, S. aureus tries to produce a viscous infection of joints and bones called 
osteomyelitis (Chang et al. 2013). Another recent issue concerning S. aureus is the prevalence of its 
infections during orthopaedic procedures, especially hip or knee arthroplasty (Beam and Osmon 2018). 
UTIs caused by S. aureus are rarely observed. However other issues like older age, hospital exposure, 
urologic surgical procedures, long-term urinary tract catheterization, urinary tract obstruction, and 
malignancy favour induction of hematuria caused by S. aureus. Similarly, it may also cause dysuria, 
bacteriuria, or bacteremia (Gad et al. 2009). The research by Gjodsbol et al. (Gjødsbøl et al. 2006) denoted 
that S. aureus can be identified in more than 80% of chronic wound infections typified by diabetic foot 
ulcers, venous ulcers, and pressure sores. 
 
3. Herbal Mitigation of VRSA  
 
In the context of herbal medication, the plants belonging to the genus Plectranthus have 3000 well-
identified species found in all countries of Africa, Australia, Asia and South America. The plants are well 
known by local folks as a popular medicine (Figure 1). They are often used by locals for treatment of 
digestive, respiratory problems, infectious and inflammatory (Waldia et al. 2011; Daglia 2012). There are 
several species of Plectranthus (Kiraithe et al. 2016; Crevelin et al. 2015) including P. amboinicus (Swamy 
et al. 2017), have been under consideration by researchers due to their unique pharmacological 
characteristics. These studies will help validate the proper use of these medicinal herbs. P. amboinicus has 
its bioactivity by 76 volatiles and 30 non-volatile compounds present in it. These compounds belong to 
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various types of phytochemicals (Arumugam et al. 2016). Research regarding the pharmacological 
activities of P. amboinicus was conducted from its extracts which are sophisticated volatile compounds. 
These compounds are naturally synthesized in several portions of the plant by secondary metabolism. 
These substances have great potential in the biomedicine sector (Swamy et al. 2016). An increased 
sensitivity of methicillin-resistant S. aureus (MRSA) has been observed against the P. amboinicus extracts 
(de Oliveira et al. 2013; Santos et al. 2015). 
These researchers studied the crude methanolic extracts of Ziziphus nummularia and used them against 
the VRSA (Vancomycin-Resistant Staphylococcus aureus). The phytochemicals present in these extracts 
included tannin, phenols, saponin and flavonoids. No steroids and alkaloids were found in the plant 
extracts although it was separated using TLC. The GC-MS analysis was applied to discover that it contains 
2-Octene, (E)- and Eugenol. These substances are the major antimicrobial factor found in the extracts of 
this plant. A study with similar objectives was presented by Odongo et al. (Odongo et al. 2023). In this 
study, they checked the antimicrobial potential of extracts from various plants like Toddalia asiatica, Aloe 
secundiflora, Camellia sinensis and Senna didymobotrya against several types of clinically important 
pathogens including S. aureus. The study made several revelations about the potential antibacterial effect 
that was achieved through the combination of the extracts from Aloe secundiflora and Clonorchis sinensis 
used against S. aureus. 
Akinduti et al. (Akinduti et al. 2022) studied the antimicrobial activity of the plant extracts of several plants 
including Vernonia amygdalina, Azadirachta indica, Acalypha wilkesiana and Moringa oleifera. These 
extractions were tested against the isolates of multi-drug-resistant S. aureus. The results of these tests 
revealed the potential impact of these plant extracts as antibacterial agents due to the presence of 
compounds like saponin, alkaloids and terpenoids in the plant extracts. These discoveries suggested that 
the extracts of plants might be an alternative to the herbal formation with biologically active substances 
that can target S. aureus even if it is vancomycin-resistant. The antimicrobial activity of plant extracts from 
Calpurnia aurea and their portions were tested against several important pathogenic bacteria including S. 
aureus. The antimicrobial activity was evident in targeting S. aureus. It was attributed to all of the fractions 
found in the plant extract. The other studies regarding the effectiveness of extracts from plants like 
Calpurnia aurea also supported its usability for the treatment of skin infection. These extracts include 
compounds like saponins and alkaloids that improve their effectiveness (Wasihun et al. 2023). In another 
research, the leaves of Artemisia afra were used to obtain crude extracts. These extracts were then tested 
for effectiveness against several clinically important pathogens including S. aureus. These extracts have 
shown promising activity with bactericidal potential. Thus suggesting that the plant extract under 
consideration is a less toxic and economical antibiotic from Artemisia afra against S. aureus (Haile and Jiru 
2022). Edet et al. filtered the raw extracts from Annona muricata to verify its effectiveness against multi-
drug resistant (MDR) S. aureus and the result determined the composition of extracts to be several 
phytochemicals including glycosides, saponin, flavonoids, alkaloids, hydroxyanthraquinones, polyphenols, 
anthraquinone, phlobatannins and tannin. The GC-MS study showed the presence of carbonic acid 2-
dimethylaminoethylpropyl ester, 1-methyl-4-phenyl-5-thioxo-1,2,4-triazolidin-3-one and 
trichloromethane, bicyclo[4.1.0]heptan-2-one 6-methyl. Conclusively, all the studies proved that the 
phytocompounds present in the raw methanolic extracts obtained from Ziziphus nummularia had active 
compounds for anti-VRSA action against pathogenic bacteria (Edet et al. 2022). 
 
4. Use of PAMAN Nanoparticles 
 
Infections of bacterial origin are a serious threat to the security of global human health (Outterson et al. 
2016). Another severe case of infectious disease is its occurrence by antibiotic-resistant bacteria that is 
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estimated to cause 10 million fatalities by the year 2050 (Humphreys and Fleck 2016). Even with an 
ongoing series of publications regarding innovative and “improved” antibiotics, the clinical presentation 
of their effects is still not very promising (Burrowes et al. 2011). Strict policies, high costs of development 
and shorter lifetime effectiveness life-times of new antibiotics, before the first strains of bacteria emerge 
to develop new antibiotics at a commercial level, have little attraction (Spellberg 2014). Hence formulating 
new strategies is a matter of urgency to discover options for improved usage of presently available 
antibiotics. Simultaneously, a change of paradigm is necessary for the aversion of research and 
development to focus away from the production of antibiotics towards introducing new antibiotics that 
do not lead to the emergence of antibiotic resistance in pathogenic bacteria. Such a shift in the paradigm 
of research might be more attractive for companies if it becomes commercially feasible for marketing and 
later on for clinical uses. A large number of innovative nanotechnology-based antibiotics are already 
known to mankind (Liu et al. 2019a) Some examples of nanoparticles include metal nanoparticles (Yang et 
al. 2017b; Zheng et al. 2017; Wang et al. 2019), particularly Ag nanoparticles (AgNPs) (Xiu et al. 2012) that 
have the capability for disrupting membranes of the cell by releasing Ag ions (Rizzello and Pompa 2014; 
Wang et al. 2016). The main challenge hindering the practical use of AgNPs is the formation of aggregates 
in suspension. The aggregation leads to a reduction in the antimicrobial action of AgNPs (Martínez-
Castañon et al. 2008). AgNP aggregation can be prevented by using block copolymers (Ji et al. 2020), 
micelles (Huang et al. 2017) and vesicles (Lu et al. 2013) as a template. The disadvantage of template 
synthesis is that they are complex and expensive. Both of these issues hinder clinical application. 
Dendrimers are also a good, alternative template to be used with AgNPs. Such an example is Poly-(amido-
amine) (PAMAM) dendrimers which are dendritic molecules with extensive branching and large molecular 
mass. Its size distribution is narrow with a distinct globular structure (Avila-Salas et al. 2020; Song et al. 
2020). It has been used in conjunction with gold nanoparticles as contrast agents in computerized 
tomography (Liu et al. 2019b) or immune-sensor coatings (Razzino et al. 2020). Hence PAMAM dendrimers 
are also useful as a suitable template for AgNPs. The relatively larger molecular size of PAMAM dendrimers 
facilitates the integration of AgNPs and also assists in the conjugation of an additional antibiotic. 
Conjugation of two antibiotics can result in the reduction of the chances of the pathogenic bacteria 
developing resistance (Ejim et al. 2011). 
A frequently used antibiotic for controlling clinical infections is Vancomycin (Ozcan et al. 2006; Dalton et 
al. 2020). Vancomycin has been used in the past as a part of single-conjugated systems for antibiotic 
applications (Choi et al. 2013). Conjugation of vancomycin with PAMAM dendrimers has shown five orders 
of better-targeting magnitudes against cell surfaces of bacteria. These are much better than the simple 
vancomycin solution (Choi et al. 2013). However, Choi et al. (Choi et al. 2013) only discussed the targeted 
attacking and killing efficacy of vancomycin in PAMAM dendrimers with single-conjugation without 
conjugating a second antibiotic or evaluating the possibility of antimicrobial resistance being developed in 
the bacteria under attack. Recently, a new type of PAMAM-based dendrimer for antibiotics, with dual-
conjugation has been developed. It is hetero-functionalized as it kills the vancomycin-resistant S. aureus 
strain in vivo and in vitro while preventing tissue damage that may occur upon usage of AgNPs (Gu et al. 
2019) or vancomycin (Abdullah et al. 2016) in high concentrations. In vivo, the killing of bacteria was 
confirmed by an experiment on a murine-infected wound model through the application of a single low 
dose of topical Van-PAMAMAgNP dendrimers (2 mg/kg vancomycin, which is a lower dose as compared 
with other animals under consideration as the literature suggests that topical application necessitates up 
to 40 mg/day/kg dose for seven days continuously) (Ozcan et al. 2006). The most significant role of these 
innovative hetero-functionalized Van-PAMAM-AgNP dendrimers having dual-conjugated is their ability to 
prevent the development of antibiotic resistance in vancomycin-sensitive strains of S. aureus. These two 
notable characteristics of Van-PAMAM-AgNP dendrimers were developed using unmodified AgNP. On the 
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other hand, Van-PAMAM-AgNP dendrimers were discovered to be blood and tissue-compatible up to an 
Ag equivalent concentration of 8 μg/mL in vivo and in vitro. In contrast to unmodified ones the modified 
AgNPs often display a reduction in biocompatibility (Li et al. 2021). The combination of vancomycin with 
AgNPs seems crucial for low-dose bactericidal action against vancomycin-resistant staphylococci. Both 
single-conjugated PAMAM-AgNP dendrimers and Van-PAMAM cannot efficiently kill strains of S. aureus at 
low doses, irrespective of their vancomycin resistance. AgNP can induce damage to the cell walls of 
bacteria by releasing Ag ions (Kaur et al. 2019), thereby allowing entry of vancomycin into the intracellular 
spaces (Kaur et al. 2019).  
 

 
 

Fig. 1: Herbal Treatment options for Vancomycin-resistant Staphylococcus aureus. 

 
5. Conclusion 
 
Staphylococcus aureus is a globally prevalent bacteria found in nearly all kinds of media making it a 
prevalent organism suitable for study models. Sometimes it is also found in isolates from infection sites 
like in case of ectopic skin infections in Saudi Arabia. The infections caused by S. aureus were easily treated 
in the past using regular antibiotics like the methicillin group. Soon, people started misusing this antibiotic 
leading to the development of resistance in bacteria. These became the methicillin-resistant S. aureus 
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(MRSA). After the discovery of methicillin resistance scientists started using Vancomycin as the drug of 
choice against MRSA. Soon, people also started vancomycin haphazardly that soon led to antibiotic 
resistance in bacteria against it. The discovery of vancomycin-resistant Staphylococcus aureus (VRSA) was 
the last nail in the coffin of humanity battling against pathogenic S. aureus. This discovery was an alarming 
situation for mankind as this meant there were no more antibiotic options for humans to use against 
pathogenic S. aureus. Soon, researchers started shifting their attention towards the alternative remedies 
of generally all infectious diseases particularly S. aureus infection, besides the use of traditional; 
antibiotics. This shift in the research and development paradigm soon resulted in the emergence of new 
herbal and nanoparticle options for battling infectious diseases in the modern era. The herbal approach 
implements the use of plant extracts as antibiotics or antibiotic carriers. Similarly, the nanoparticles may 
be used as lone antibiotics or antibiotic carriers. 
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