
ZOONOSIS  
 

531 
 

Molecular Pathology of Campylobacter 

 
Arjmand Fatima1*, Rana Waqar Tabish2, Mubshra Naseer1, Adil Shahzad1, Muhammad 

Sufyan1, Aleesha Munawar1, Areeha Asghar1, Zainab Shahid1, Zafran Khan3 and 

Muhammad Rashid1 

 

ABSTRACT  
Campylobacter spp. are globally prevalent zoonotic pathogens causing bacterial diarrheal diseases. 
Found in warm-blooded animals and diverse environments, they transmit to humans through 
contaminated water, food, or contact with diseased animals. Human campylobacteriosis, caused 
primarily by Campylobacter coli (C. coli) and Campylobacter jejuni (C. jejuni), manifests as 
gastroenteritis and ranks among the leading causes of global diarrheal diseases. These infections can 
lead to severe complications, including autoimmune disorders like Guillain-Barre syndrome (GBS). In 
animals, infections can result in clinical effects like abortions, liver disease, and infertility. 
Campylobacter spp. lack typical human disease virulence factors, suggesting that clinical symptoms in 
campylobacteriosis are primarily triggered by the host immune response. This chapter explores the 
intricate interactions between C. jejuni and host tissues, focusing on the molecular pathology and 
inflammatory responses elicited, with an emphasis on the involvement of immune cells. The 
gastrointestinal epithelial cells play a crucial role in the initial stage of responding to C. jejuni infections 
through adhesion and extracellular sensing. Toll-like receptors (TLRs) are involved in detecting invasive 
infections, triggering proinflammatory responses. Upon invasion, C. jejuni uses Campylobacter invasion 
antigens (Cia) to penetrate intestinal cells, leading to increased IL-8 secretion and neutrophil 
chemotaxis. The genotoxin cytolethal distending toxin (CDT) and CRISPR-associated gene 9 (CjeCas9) 
contribute to host DNA disruption, apoptosis, and inflammation. Neutrophils, eosinophils, and mast 
cells play roles in tissue damage, with neutrophils restricting C. jejuni growth and eosinophils exhibiting 
activation responses. The adaptive immune response involves B and T lymphocytes generating 
antibodies and cytotoxic T cells respectively. Monocytes/macrophages, dendritic cells, and natural killer 
(NK) cells act as key players bridging innate and adaptive immunity, with various roles in inflammation, 
tissue repair, and modulating immune responses. NK cells interact with C. jejuni components to 
suppress inflammation and coordinate T lymphocyte responses. Understanding these complex 
interactions is crucial for unraveling the mechanisms underpinning Campylobacter-induced tissue 
pathology and inflammation, paving the way for advancements in disease management and prevention. 
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1. INTRODUCTION  
Campylobacter spp. are important zoonotic pathogens and are one of the most prevalent causes of 
bacterial diarrheal diseases around the globe (Olvera-Ramírez et al. 2023). Campylobacter spp. inhabits a 
wide variety of environments, and the Campylobacter genus is frequently found in the intestine of warm-
blooded animals, such as ruminants, poultry, and pigs. Its transmission to humans can occur by consuming 
tainted water or food or by coming into close contact with diseased animals (Chlebicz and Śliżewska 2018; 
Bunduruș et al. 2023). Wildlife can also have high pathogen-shedding potential and may play a crucial 
role in the spread of these zoonotic pathogens (Olvera-Ramírez et al. 2023). Even though there is a 
modest danger of zoonotic agents in wild birds infecting humans, this issue is thought to 
be a developing concern (Wei et al. 2019). The Campylobacter genus species have been classified using 
studies based on their prevalence in a range of animals and environmental reservoirs (Soto-Beltrán et al. 
2023). The infection brought on by members of the genus Campylobacter in humans is known as human 
campylobacteriosis. Human campylobacteriosis exhibits gastroenteritis and is among the four main 
causes of diarrheal diseases around the globe (WHO 2020). Although the primary causes of human 
campylobacteriosis are Campylobacter coli (C. coli) and Campylobacter jejuni (C. jejuni) (Man, 2011) but 
a wide range of other Campylobacter species such as Campylobacter fetus (C. fetus), Campylobacter 
mucosalis (C. mucosalis), Campylobacter concisus (C. concisus), Campylobacter upsaliensis (C. 
upsaliensis), Campylobacter rectus (C. rectus), and Campylobacter lari (C. lari ) have also been recovered 
from human clinical samples (Sheppard et al. 2009; Igwaran and Okoh 2019). 
Abdominal pain, diarrhea, malaise, and fever are clinical outcomes of Campylobacter infections. Even 
though symptoms are typically self-limiting and may last for up to two weeks, the illness can occasionally 
be more severe and can have post-infection sequelae (Tegtmeyer et al. 2021). Certain other 
gastrointestinal conditions, like esophageal diseases, inflammatory bowel disease, colon cancer, 
cholecystitis, celiac disease, and periodontitis, can also be caused by Campylobacter species (Verdu et al. 
2007; Kaakoush et al. 2015). The Campylobacter infections can be followed by fatal, life-threating 
autoimmune disorders such as Guillain-Barre syndrome (GBS), reactive arthritis (ReA), Miller Fisher 
syndrome, and irritable bowel syndrome (IBS) (Callahan et al. 2021; Soto-Beltrán et al. 2023). C. concisus, 
a member of the other emerging group of Campylobacters spp. that are typical in human oral commensal 
flora, has lately been associated with non-oral conditions (Kato et al. 2023). Campylobacteriosis can 
develop at doses as minimal as 800 colony-forming units (CFU), while C. jejuni infections can develop at 
doses as minimal as 360 CFU (Hara-Kudo and Takatori 2011). 
In 1909, Campylobacter spp. was first recognized as a source of animal disease, yet until 1980, it was not 
identified as a cause of infection in humans (Galate and Bangde 2015). Campylobacter species are 
frequently cited as a prominent source of bacterial gastroenteritis in both developed and developing 
nations (EFSA 2021). The Campylobacter genus belongs to the family Campylobacteraceae, the order 
Campylobacterales, and the class Epsilonproteobacteria (Vandamme et al. 2015). The Campylobacter 
genus currently has 32 officially recognized species, along with 9 subspecies and 4 biovars (ITIS 2020). 
Campylobacters are Gram-negative, microaerophilic, corkscrew-shaped bacteria with a size range of 0.5 
to 5 μm in length and 0.2 to 0.9 microns in width (Wassenaar and Newell 2006; Vandamme et al. 2015). 
Majority of the Campylobacter species are fastidious organisms that often demand a microaerophilic 
environment for growth (Soto-Beltrán et al. 2023). The ideal temperature for the growth of 
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thermotolerant Campylobacter species is between 37 and 42°C, and the thermotolerant Campylobacter 
species include C. coli, Campylobacter insulaenigrae (C. insulaenigrae), C. upsaliensis, Campylobacter 
helveticus (C. helveticus), C. lari, and C. jejuni (Wassenaar and Newell 2006; Vandamme et al. 2015). While 
other Campylobacter species except of these thermotolerant Campylobacter are thought to be non-
thermotolerant, having an optimum temperature of growth, i.e., 37°C (Soto-Beltrán et al. 2023). The 
environmental abundance of thermophilic Campylobacter species eventually acts as a bridge for the spread 
of this bacterial pathogen between various hosts and habitats (Dearlove et al. 2016; Gölz et al. 2018). 
Complex gastroenteritis may develop as a result of the Campylobacter bacterium's unusual capacity to 
adapt to various settings; in certain situations, this condition may be difficult to treat due to increased 
resistance to various medications (Bunduruş et al. 2023). The pathogenic Campylobacter spp. have the 
ability of long-term survival in food products, regardless of their inability to flourish outside the 
homeotherms’ digestive tracts. These bacteria are typically vulnerable to environmental stress, yet they 
have evolved a variety of survival strategies for the environment and the food chain, which can result in 
human infections (Chlebicz and Śliżewska 2018). A wide range of virulence factors are encoded by the 
Campylobacter genome, giving the bacterium capacity to affect host immunological defenses, make 
biofilms, and withstand antimicrobials, which ultimately increase its infection-inducing potential 
(Bunduruș et al. 2023). Campylobacter spp. can contaminate both dairy products and meat; however raw 
milk is particularly prone to infection (Newell et al. 2017; Chlebicz and Śliżewska 2018). Chicken meat can 
get contaminated with Campylobacter at slaughterhouses due to Campylobacter-infected chickens' gut 
content coming into contact with chicken carcasses (Newell et al. 2011). 
Campylobacter spp. infections can also occur in animals and can make them experience a range of clinical 
effects. For example, C. fetus subsp. fetus causes abortions in cattle, goats, and sheep; C. hepaticus 
induces spotty liver disease in layer hens; and C. fetus subsp. venerealis causes infertility in cattle (Courtice 
et al. 2018; Crawshaw 2019). Campylobacter colonization in chicks typically occurs at 2-3 weeks of age, 
but they are usually asymptomatic after colonization (Newell and Fearnley 2003; Awad et al. 2015; 
Connerton et al. 2018). In infected chickens, Campylobacter spp. colonizes the mucosa of the cloaca crypts 
and cecum, and chickens may also have these bacteria in their liver and spleen (Chlebicz and Śliżewska 
2018). Wildlife can also serve as a reservoir, amplifying hosts, and even a source of Campylobacter (Becker 
et al. 2015). Particular emphasis has been placed on the origin of these strains, and it has been suggested 
that chicken’s C. hepaticus could have an environmental origin (Phung et al. 2020; Wu et al. 2022). 
Most of the investigations are centered around C. jejuni, as it is the most common cause of diarrheal illnesses 
even in the industrialized world. Campylobacter spp., in contrast to other bacteria that cause gastrointestinal 
tract diseases, lacks some of the traditional virulence factors that are frequently linked to cause disease in 
humans. Therefore, it is thought that the host immunological response to the bacteria is principally 
responsible for the clinical symptoms of human campylobacteriosis and the gastrointestinal disease. Since 
gastrointestinal disease is typically caused by the host’s immunological response, the onset of postinfectious 
disorders may come from the misdirection or dysregulation of the same inflammatory response (Callahan 
et al. 2021). Therefore, it is crucial for human health and the disease diagnostic fields to understand the 
molecular pathology, mainly including the cellular immune responses to Campylobacter and the 
immunological events crucial for the disease onset and the post-infectious disorders (Callahan 2023). 
Molecular pathology is a branch of the biomedical sciences that concentrates on the development, 
progression, and evolution of diseases on the molecular level. Molecular pathology is typically treated as 
a subgroup of the pathology. In traditional pathology, the morphological manifestations of disease are 
focused. However, molecular pathology also incorporates molecular biology tools in order to: isolate and 
identify the infectious disease-causing agents; comprehend differential gene expression role in disease 
etiology; provide more precise methods of disease diagnosis; and offer more individualized therapy 
options. Molecular pathology can be approached from a variety of perspectives, and it also incorporates 
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immunology, genetics, and other medical field aspects. Cell culture and cell isolation are the main 
approaches utilized in molecular pathology to determine links between gene alterations and disease. The 
other methods used in molecular pathology involve tissue microdissection methods, gel electrophoresis 
methods, amplification methods, hybridization methods, and nucleic acid sequencing. Nucleic acid 
sequencing further consists of proteomics, and DNA microarrays. Along with being used in biomedical 
research to understand specific disorders, molecular pathology also has practical applications for patients. 
The development of molecular diagnostics is a result of biological breakthroughs that have led to an 
improved understanding of the molecular mechanisms. Prior to this comprehension, morphologic 
observations were used for the diagnosis of different states of disease (Kaoud 2012). 
An insight into Campylobacter host tissue pathology and inflammatory responses, along with the aspects 
of the host’s immune cells involved, is given below. 
 
2. EPITHELIAL CELLS 
 
There are two processes that happen within epithelial cells. These are; 
 
2.1. ADHESION AND EXTRACELLULAR SENSING 
 
Gastrointestinal epithelial cells, along with acting as a physical barrier, are also fitted with intracellular 
and extracellular receptors that may, respectively, detect invasive infections and sample the lumen of the 
gut (Tang et al. 2016). C. jejuni can penetrate the distal intestine and proximal colon mucus layer to make 
it to the intestinal epithelial cells (IECs) apical surface after being ingested in fairly small infectious doses 
via contaminated drinking water or food (Chang and Miller 2006; Teunis et al. 2018). C. jejuni can attach 
to IECs and infiltrate them once it has passed through the mucus layer (Hendrixson and DiRita, 2004; 
Lugert et al. 2015). Toll-like receptor (TLR) reporter HeLa cells have been reported to be triggered by lysed 
C. jejuni via the sensing activities of different TLRs used to sense the bacterium. These TLRs include 
TLR1/2/6 and TLR4, which recognize bacterial lipoproteins and lipopolysaccharides, respectively. NF-κB is 
activated by these TLRs being stimulated, which is transduced via the MyD88 signaling cascade. IL-1β, IL-
8, IL-12p42, GRO-α, tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein 1 (MCP-
1) are all produced and secreted as a result of NF-κB activation (Konkel et al. 2020). TLR4 activation also 
activates the Toll/IL-1R domain-having adaptor-inducing IFN-β (TRIF) signaling cascade, culminating in IFN-
β production (Hu and Hickey 2005; de Zoete et al. 2010; Yu and Gao 2015). Human IECs release IL-8 after 
being stimulated by C. jejuni, which then encourages chemoattraction along with numerous neutrophils 
recruitment to the infection site (Hickey et al. 2000). Along with IL-8, a proinflammatory cytokine called 
IL-6, required for mounting an adaptive immune response, is released when IEC TLR1/2/6 are stimulated 
(Friis et al. 2009). Beta-defensins 2 and 3 are also produced by IECs in response to C. jejuni stimulation, 
although the stimulus necessary for induction is yet undefined (Zilbauer et al. 2005). Beta-defensins are 
secreted cationic antimicrobial peptides that can attach to the bacterial membranes, which are negatively 
charged, prompting leukocyte chemoattraction and bacterial cell death (Cobo and Chadee 2013). 
 
2.2. INVASION AND INTRACELLULAR RESPONSES 
 

C. jejuni enters IECs once it has reached the apical surface, and this invasion is reliant on the 
Campylobacter invasion antigen (Cia) protein secretion (Buelow et al. 2011). Cia proteins, along with 
encouraging cellular invasion, can also activate the extracellular signal-regulated kinases (ERK) and p38 
mitogen-activated protein (MAP) kinase pathway to increase IL-8 secretion from IECs. This increased IL-8 
production from IECs causes robust neutrophil chemotaxis to the infection site. Eventually, C. jejuni 
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invades IECs by remodeling host microtubules and actin, even though it doesn't seem to create actin tails 
for intracellular trafficking. This indicates that C. jejuni continues to retain itself within a Campylobacter-
containing vesicle (CCV) (Watson and Galán 2008; Samuelson et al. 2013). Some strains of C. jejuni 
produce cytolethal distending toxin (CDT), a genotoxin, once they are intracellular. CDT can induce cell 
cycle arrest, cell swelling, and cell distension (Lara-Tejero and Galán 2000; Scuron et al. 2016). Epithelial 
barrier disruption and impairment of signaling pathways, which change the immune response of the host, 
are predicted outcomes of this cellular response (Scuron et al. 2016). The formation of the CCV in IECs 
may be significantly influenced by CDT. Furthermore, the bacterium may use alternative strategies to 
target the DNA of the host, as C. jejuni strains without CDT nonetheless cause disease and DNA damage. 
For instance, it was recently shown that C. jejuni, while in IECs, explains clustered regularly interspaced 
palindromic repeat (CRISPR)-associated gene 9 (CjeCas9) linked with the outer membrane vesicle. The 
CjeCas9 gene can target the DNA of the host, causing epithelial cell death right after being released, along 
with the proinflammatory gene expression’s upregulation (Saha et al. 2020; Saha et al. 2020). 
Furthermore, several investigations have shown that C. jejuni triggers IECs' caspase-3-dependent 
apoptosis, although the behind mechanism of this reaction is yet undefined (Butkevych et al. 2020). Since 
it seems that C. jejuni uses a variety of mechanisms to disrupt the DNA of the host and those responses 
could induce inflammation. Therefore, more studies should be done to fully characterize these systems 
and understand how they affect tissue pathology and inflammation (Callahan et al. 2021). 
IECs have the ability to sense intracellular C. jejuni along with responding to extracellular bacteria. 
Intracellular C. jejuni can activate TLR9, which further recognizes intracellular DNA (de Zoete et al. 2010). 
Furthermore, nucleotide-binding oligomerization protein (NOD) receptors seem to be involved in the 
recognition of intracellular C. jejuni. The lack of NOD2 in colonocytes may inhibit the host immunological 
response, leading to an increase in the bacterial burden; however, other immune cells, such as 
macrophages and dendritic cells (DCs), express NOD2 (Moreira and Zamboni 2012). In fact, NOD2 
activates the antibacterial function in IECs, particularly against C. jejuni (Barnich et al. 2005). Additionally, 
in response to C. jejuni, NOD1 is also activated, which causes a decrease in intracellular C. jejuni and an 
increase in hBD2 and IL-8 (Zilbauer et al. 2007). Since NOD activation and cytotoxicity are closely related, 
it is possible to hypothesize that epithelial NOD signaling causes tissue pathology in infected people (Heim 
et al. 2019). This bacterium can travel to the colonocyte's basolateral side while inside the CCV and 
exocytose to the colon's underlying tissue to come into contact with chemoattracted leukocytes (Kopecko 
et al. 2001; Callahan 2023). It has been found that tight junction disruption brought on by C. jejuni causes 
barrier dysfunction, which in turn signals the production of pro-inflammatory cytokines. Proinflammatory 
cytokines include IL-1β, IL-6, IL-13, TNF-α, IFN-γ, and MCP-1 (Schmidt et al. 2019). Further research is 
required to determine how this virulence factor affects inflammation during campylobacteriosis because 
tight junction proteins are crucial for controlling intestinal inflammation following damage (Slifer and 
Blikslager 2020). 
Neutrophils, eosinophils, and mast cells are also involved in Campylobacter-induced tissue damage and 
pathology, along with generating innate immune cell responses (Callahan et al. 2021). 
 
3. NEUTROPHILS 
 

Neutrophils are the first innate immune cells drawn to the infection site after Campylobacter effectively 
penetrates the epithelial barrier (Kolaczkowska and Kubes 2013). The three primary antibacterial 
functions of neutrophils include microbe degradation, phagocytosis, antimicrobial proteins release via 
degranulation, and the exclusion of neutrophil extracellular traps (NETs) (Callahan et al. 2021). Due to 
their high proinflammatory activity and abundance in colonic tissue during C. jejuni infection, neutrophils 
must be taken into account as a possible cause for acute and chronic illnesses as well as tissue pathology. 
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Neutrophils move from the basolateral to the apical side of the epithelium within colonic crypts, which 
are reliant on 12-lipoxygenase (12-LOX), a host-derived enzyme, and n-formyl peptides from bacterial 
sources (Murphy et al. 2011). The interaction between C. jejuni and neutrophils causes complement-
opsonized cells to be phagocytosed, leading to the generation of reactive oxygen species (ROS), which 
directly kills the bacterium and causes localized tissue damage (WALAN et al. 1992; Heimesaat et al. 2023). 
Along with phagocytosis and direct cell death, a large number of neutrophil-derived antimicrobial proteins 
are released into the surrounding tissue, and they build up in the feces of individuals with a C. jejuni 
infection. These antimicrobial proteins include neutrophil elastase (Ela2), lipocalin-2 (Lcn2), calgranulin C 
(S100A12), and myeloperoxidase (MPO). These antimicrobial proteins' activities indicate that during an 
infection, their release is a possible factor in the growth restriction of C. jejuni, and these proteins are 
probably released as a consequence of degranulation. Ela2 and MPO were also observed to colocalize 
with NETs in the infection brought on by C. jejui (Shank et al. 2018; Callahan et al. 2020). It has been 
hypothesized that NETs play part in the intestinal pathology and formation of crypt abscess during 
campylobacteriosis because of their cytotoxic nature. These NETs may have a significant impact on the 
emergence of the postinfectious disorders outlined in the introduction, as these structures are linked to 
a variety of autoimmune diseases (Li et al. 2020). More investigation into C. jejuni-neutrophil interactions 
is required because of the link between pathology, inflammation, neutrophil activity, and the emergence 
of autoimmune diseases (Callahan 2023). 
 
4. EOSINOPHILS 
 

Eosinophils are effectively activated in vitro by C. jejuni, which causes degranulation, chemotaxis, a 
respiratory burst, and eosinophil cationic proteins (ECPs) release. Although, the involvement of 
eosinophils in campylobacteriosis has received scant direct evidence (Svensson and Wennerås 2005; 
Hogan et al. 2013). Despite the eosinophil’s rarity, their response to C. jejuni and their function in 
gastrointestinal inflammation have led to hypothesis that they may play a role in the emergence of post-
infectious disorders as well as in inflammation during infections (Callahan et al. 2021). 
 
5. MAST CELLS 
 
Mast cells are recognized as inflammatory granulocytes, and they release a number of cytokines and 
histamine (Krystel-Whittemore et al. 2016). It is thought that mast cells have a small role in infection, despite 
the fact that they have been identified in the stools of individuals infected with Campylobacter (Hendrixson 
and DiRita 2004). Mast cell closeness to enteric nerves was observed to be correlated with stomach pain 
during IBS, so even though mast cells do not seem to be directly implicated in campylobacteriosis, their 
participation in gastroenteritis cannot be completely dismissed (Callahan et al. 2021). 
Both B and T lymphocytes are also engaged in Campylobacter-generated infection. B cell responses occur 
along with antibody production, while T cell responses occur alongside subtype switching. Both together 
constitute the adaptive immune response (Callahan et al. 2021; Al-Naenaeey et al. 2022). 
 
6. B Lymphocytes 
 
In order for humoral immune responses to begin, antigen-reactive B cells must be exposed to antigens. 
Titers of serum IgM, IgA, and IgG antibodies relevant to bacterial epitopes peak approximately 11 days 
following infection with C. jejuni in humans (Black et al. 1988). Autoreactive IgG1 antibodies are the most 
prevalent subtype of antibodies produced after campylobacteriosis (Malik et al. 2014). As there is a 
significant link between IgG1 levels and GBS severity, it has been proposed that this reaction is crucial to 



ZOONOSIS  
 

537 
 

the GBS development following infection with C. jejuni. On average, GBS can affect 1/900 people. This 
proposition is largely supported by the finding that a number of the IgG and IgA antibodies generated 
during infection may also cross-react with the human GM1 gangliosides found in the neurons (Masanta 
et al. 2013). Also, this reaction is probably brought on by some LOS core oligosaccharides of C. jejuni that 
mimic human ganglioside GM1 structures (Yuki et al. 2004). However, to comprehend the biochemical, 
genetic, and molecular underpinnings of these responses, additional research must be undertaken 
(Callahan et al. 2021). 
 
7. T Lymphocytes 
 

Studies have shown that there is likely a connection between tissue pathology and inflammatory T 
lymphocyte activities (Malik et al. 2014). IL-12, which is secreted by mature dendritic cells during the later 
stages of infection, encourages naive T cells to develop into T helper 1 (Th1) cells, which then generate 
IFN-γ (Hu et al. 2006; Rathinam et al. 2009). Th1-derived cytokines, once they had undergone 
differentiation into Th1 lymphocytes, peak 7 to 14 days after infection, with IFN-γ+ CD4+ T cells being the 
most prevalent lymphocyte in humans infected with C. jejuni (Fimlaid et al. 2014). These findings lead to 
the hypothesis that campylobacteriosis is predominantly a Th1 lymphocyte illness with a secondary 
development of Th17 cells. Patients may have a higher proportion of Vδ1 γδ (Vδ 1) CD8+ T cells among the 
T cells generated during human Campylobacter infection, which is particularly intriguing given that these 
cells are linked to autoimmunity and cytotoxicity (Scelsa et al. 2004; Presti et al. 2021). Proinflammatory 
cytokines can activate the Vδ 1 T cell receptor (TCR) in the colon and intestines, and DCs can also activate 
Vδ 1 cells by utilizing microbial antigens, particularly lipid extracts from Gram-ve bacteria. The effective 
immunoregulation and host defense linked to Vδ 1 T cells depend on this recognition (Das et al. 2004). 
TLR4, an antigen linked to the previously described GM1 ganglioside, may also help T lymphocytes identify 
C. jejuni LOS (Cutillo et al. 2020). T cells may therefore be extremely important in the tissue pathology and 
the emergence of autoantibodies subsequent to campylobacteriosis (Callahan et al. 2021). Fig. 1 shows 
the body cells evoked in response to Campylobacter infection. Monocytes/macrophages, natural killer 
cells (NK cells), and dendritic cells are also produced in response to infection brought on by 
Campylobacter. These cells bridge the gap between the innate and adaptive immune responses (Callahan 
et al. 2021; Callahan 2023). 
 

8. MONOCYTES/MACROPHAGES 
 

Monocytes play a role in pathogen identification and inflammation, and monocyte-derived tissue-resident 
memory macrophages perform essential immunological tasks. These immunological tasks include anti-
inflammatory signaling pathway promotion and tissue repair (Ginhoux and Jung 2014). Tissue-resident 
macrophages particularly ingest and degrade foreign material, debris, and dead cells, along with 
performing the functions of coordinators of the tissue's inflammatory immune response and expert 
antigen presenters (Varol et al. 2015). The human peripheral blood mononuclear cells (PBMC) were 
discovered to release an increased amount of IL-6 and IL-8 in the wake of infection (Hamza et al. 2017). 
By utilizing macrophage-like differentiated THP-1 cells, IL-8 secretion was also observed, demonstrating 
the importance of neutrophil chemotaxis during infection (Jones et al. 2003). Differentiated macrophages 
are effective at eliminating intracellular bacteria because C. jejuni is unable to evade being delivered to 
lysosomes; however, some strains of the bacterium can survive intracellularly inside monocytes and can 
cause apoptosis (Hickey et al. 2005). More investigation is required to comprehend the molecular 
mechanisms behind the proinflammatory switches that occur in macrophages and monocytes infected 
with C. jejuni (Callahan et al. 2021). 
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Fig. 1: Major body cells engaged in Campylobacter-induced infection 

 
9. DENDRITIC CELLS 
 
Dendritic cells (DCs), which serve as professional antigen-presenting cells activating the adaptive immune 
response, can also originate from monocytes (Patente et al. 2019). As DCs sample the intestinal lumen 
and transcytose during infection, they most likely come into contact with Campylobacter in the lamina 
propria intraluminally (Niess et al. 2005). Siglec-10-expressing DCs may contribute to C. jejuni mucosal 
immunity by acting as anti-inflammatory cells, in contrast to the crucial function that IL-10 plays in 
reducing intestinal inflammation. However, it has not yet been determined how these cells contribute to 
campylobacteriosis (Stephenson et al. 2014). Additionally, DCs triggered by C. jejuni release NF-κB-
dependent chemokines, which further include growth-related oncogene α (GRO-α), macrophage 
inflammatory protein 1α (MIP-1α), MIP-1β, monokine induced by gamma interferon (MIG), RANTES, and 
IP-10 (Hu et al. 2012). C. jejuni causes the phosphorylation of stress-activated protein kinase/Jun N-
terminal protein kinase (SAPK/JNK), mitogen-activated protein kinases (MAPKs), P44/42, and P38 to 
induce chemokines and cytokines secretion. CD40, CD80, CD86, and mature phenotype cell surface major 
histocompatibility complex class II (MHC-II) are significantly upregulated after DCs are activated. DCs then 
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effectively internalize and eliminate C. jejuni (Hu et al. 2006). While campylobacteriosis appears to have 
anti-inflammatory effects from DCs, proinflammatory DCs in response to pathogen-associated molecular 
patterns within injured colonic tissue have also been shown in an increased amount (Stagg 2018). 
Therefore, it can be concluded that DCs are critical for campylobacteriosis, shaping and laying the 
groundwork for post-infection activity via the release of both anti-inflammatory and inflammatory 
cytokines, as well as antigen presentation (Hu et al. 2006; Callahan et al. 2021). 
 
10. NK CELLS 
 
NK cells react with the antigens of commensal and pathogenic bacteria, as well as with other various host 
cell types within the stroma and epithelium (Poggi et al. 2019). Siglec-7 molecules are used by NK cells to 
attach to the C. jejuni LOS, which promotes host inflammatory response and immunity (Avril et al. 2006). 

NK cells' cytotoxicity and activation pathways are diminished by Siglec-7, which ultimately reduces 
inflammation (Daly et al. 2019). The killer cell immunoglobulin-like receptor KIR2DS4 gets highly bound 
by conserved C. jejuni RecA epitopes provided by HLA-C*05:01 alongside LOS binding, which ultimately 
stimulates KIR2DS41 NK cells (Sim et al. 2019). Together, the aforementioned responses show that in the 
wake of C. jejuni infection, NK cells suppress the immune system for the host's advantage and coordinate 
T lymphocyte responses by antigen presentation (Callahan et al. 2021). 
 
11. CONCLUSION 
 
Campylobacter is the most common bacterium that causes gastroenteritis in people, although little is 
known about its host molecular pathology. Even though C. jejuni lacks the classical virulence factors that 
more thoroughly researched gastrointestinal pathogens have, it still invades the human GIT system and 
triggers a strong immunological response that seems to be the cause of significant immunopathology at 
the extraintestinal sites and colon. There is a significant knowledge gap in the host’s molecular pathology 
in response to the infection brought on by C. jejuni, as it colonizes several mammals with a variety of 
clinical signs. Although this factor can help us understand each host’s response to Campylobacter and it 
might also give an understanding of the divergent or shared evolution of immune mechanisms among 
various hosts. Therefore, the field of C. jejuni is an excellent spot to start comprehending the bacterial and 
host components that cause both systemic and colonic inflammation, along with the treatments and 
methods that might be useful for minimizing these effects. For instance, the current finding of innate 
memory may shed light on the autoimmunity that characterizes the postinfectious disorders of 
Campylobacter infections. The field of molecular pathology has made such great strides in recent times 
that these impacts can be comprehended in both in vivo and in vitro settings. By enhancing our knowledge 
of molecular pathology during and after infection, this discipline can commence devising strategies that 
might enable better understanding, diagnostics, and treatment of the disease, which will ultimately help 
to decrease Campylobacter prevalence across the globe. 
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