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ABSTRACT   

One common parasitic infection that is included in the category of neglected tropical diseases is leishmaniasis. It is to 

blame for rising rates of sickness and mortality, particularly in low- and middle-income nations. The three most common 

types of leishmaniasis are visceral, mucocutaneous, and cutaneous. Since the present anti-leishmanial drugs have various 

drawbacks, such as limited efficacy, toxicity, negative side effects, drug resistance, length of treatment, and cost lines, 

chemotherapy for leishmaniasis has remained unsatisfactory. Moreover, the absence of efficacious preventive vaccinations 

impedes the management of the illness. As such, the quest for novel anti-leishmanial compounds is urgently needed. 

Nanoparticles have been shown in numerous recent studies to be a viable therapeutic agent for the treatment of anti-

leishmanial disease. They can also be included with chemical medications to increase their quality, efficiency, and 

sustainability while also lowering their cost. The goal of this study is to present a thorough analysis of the various 

nanoparticles that may be employed in the future to treat leishmaniasis. 
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INTRODUCTION 
 

Leishmania is genus of the protozoan species. It infects humans, carnivores, and rodents that spreads by sandflies 

bites and Leishmania parasite has 2 forms, amastigotes and promastigotes. Amastigotes are intracellular, without 

flagellum, spherical, and non-motile forms, which proliferate within the phagolysosomes of phagocytic cells like 

macrophages of the vertebrate host. The other form, promastigotes, is inside the sandflies, extracellular, spindle-shape, 

motile, and flagellated, as show in (Fig .1).  

 

 
 

Fig. 1: The promastigote and amastigote of the Leishmania parasite (Giemsa stain, 100x) 
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There are three primary varieties of leishmaniasis that can occur: the most frequent variety, cutaneous leishmaniasis 

(CL); the deadliest type, visceral leishmaniasis (Kala-azar) (VL); and finally, mucosal leishmaniasis (ML) (Alvar et al., 2012). It 

occurs more frequently in rural areas than in cities. However, due to deforestation and climate change, leishmanian vectors 

have colonized metropolitan areas, spreading the illness to formerly uninfected areas (de Barros Dias et al., 2020; Oliveira 

et al., 2020). It is estimated that 12–15 million individuals globally suffer from this illness, with the majority of cases 

occurring in impoverished and/or developing nations because of inadequate cleanliness, a lack of preventative measures 

(such as nets, vector control and curtains), and a lack of health infrastructure (Saleem et al., 2019; Volpedo et al., 2019; Oliveira 

et al., 2020). Due to its high rates of infection and mortality, leishmaniasis has recently drawn more attention (Vaghela et al., 

2017; Nafari et al., 2020; Ahmad et al., 2020). Unfortunately, there is still no effective chemical treatment to fight the disease, 

nor a vaccination or safe medication to inhibition parasite and other kinds of it (Mahmoudvand et al., 2017). 

 

Leishmaniasis Treatment  

Traditional Treatment of Leishmaniasis 

The treatments for leishmaniasis consist of many of anti-leishmanial agents such as (Sodium stibogluconate, 

Meglumine antimoniate, Amphotericin B deoxycholate, Liposomal amphotericin B, Micellar amphotericin B, Pentamidine, 

Miltefosine, Paromomycin, Sitamaquine), These treatments are toxic and need a long-term treatment, which results in low 

patient compliance and drug resistance. Moreover, they usually incur considerable costs and necessitate cure (Akbari et al., 

2017; de Souza et al., 2018). Finally, individuals with compromised cellular immune function, such as those infected with 

the human immunodeficiency virus (HIV), experience treatment failure and higher rates of relapse (Bruni et al., 2017). 

Moreover, vaccines have not succeeded in reaching clinical trials, and chemotherapy remains the only available treatment 

option for the time being. Therefore, in order to replace or enhance the current medications, and should develop new, 

more potent medications with enhanced features.  

 

New or Alternative Treatment of Leishmaniasis 

A nanoparticle is a small particle with a size (1-100) Nm. NPs is invisible, but it could detect by many of characteristics 

(physical and chemicals) from their larger material counterparts (Joudeh and Linke, 2022). The vast topic of nanomedicine 

has surfaced as a potential solution to problems pertaining to the side effects of older medications (Keyhani et al., 2020). 

This discontent stems from insufficient drug biodistribution, which results in a restricted therapeutic response and a range 

of adverse effects on healthy organs (Barratt, 2003; Beija et al., 2012). Additional observations point to the significance of 

nano-dimensionality in enhancing the efficiency of procedures like cellular absorption and biological barrier crossing, 

which can aid in the development of medications that are efficient in addressing infected tissues (Maeski, 2002; Couvreur 

and Vauthier, 2006; Huh and Kwon, 2011). In recent years, the use of nanoparticles in medicine, particularly for parasitic 

illnesses, has gained particular attention. Whereas the costly, energy-intensive, and potentially hazardous physical and 

chemical synthesis methods were being replaced with more ecologically friendly ones, nanoparticles were being created 

"biologically" through the use of plant- or microorganism-mediated reduction processes (Bhardwaj et al., 2020). In 

addition to being less costly and more ecologically friendly than chemically produced compounds, experiments have 

demonstrated their biological efficacy against diseases and may even be somewhat superior to them. To get rid of 

parasites, nanoparticles can be applied alone or in conjunction with other materials. Because of their destructive and 

inhibitory properties, it is therefore advised to utilize nanoparticles to eradicate parasites, improve the safety and efficacy 

of medications, and create efficient vaccines to prevent and combat parasites, particularly the Leishmania parasite (van 

Griensven and Diro, 2019). The NPs are believed to use a variety of methods to destroy microorganisms, including 

microbial membrane disintegration that results in oxidative stress, cell damage caused by ROS that damage DNA and 

leading into death of the cell by protein and lipid oxidation, and release of the ions that inhibit enzyme activity by 

displacing metal from metalloenzymes. These mechanisms are thought to prevent pathogens from evolving resistance 

(Ahmad et al., 2020). These new combinations can decrease side effects and the number of doses at a fair cost, increasing 

the likelihood of producing effective leishmaniasis treatments, regardless of production costs (Chávez-Fumagalli et al., 

2015). Various metal and metal oxide nanoparticles have emerged as potent anti-leishmanial agents thus far such as: 

 

• Silver Nanoparticle (AgNPs) 

Since silver nanoparticles have a wide range of antibacterial activities, they are very important. As a result, silver 

nanoparticles have been employed as a substitute therapeutic agent to combat different types of leishmaniasis resistance. 

Leishmania spp. are relatively sensitive to ROS, which is the primary source of silver nanoparticles' antibacterial action 

(Allahverdiyev et al., 2011). Similar to antimony in its mode of action, silver is inhibitor of trypanothione/trypanothione 

reductase (Zahir et al., 2015; Baiocco et al., 2011). For promote the NPs accumulation in L. major-infected, the delivery of a 

small amount of silver NPs with electroporation. It causes high toxicity on macrophage and Leishmania (Dolat et al., 2015). 

Bioactive phytochemicals like flavonoids and alkaloids give biogenic metal nanoparticles (Metal NPs manufactured by use 

different plants) their extra antibacterial activity (Ahmad et al., 2020), As a result, these NPs may hold promise as anti-

leishmanial medications. 

Several articles address how biogenic silver nanoparticles can be used to treat leishmaniasis (Bagirova et al., 2020) By 

significantly lowering the promastigotes' rate of proliferation and the amastigotes' metabolic activity, they were 
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demonstrated that both chemically and biosynthesized (using cumin seed extract) silver NPs significantly inhibited L. 

tropica promastigotes and intracellular amastigotes, In addition, Bio-AgNPs induced the release of NO by macrophages, 

which killed Leishmania parasites. As a result, Bio-AgNPs were discovered to be more efficient than AgNPs against both 

kinds of Leishmania parasites, the results showed that green nanoparticles have a strong antileishmanial potential against 

L. tropica parasites, which are the cause of Cutaneous Leishmaniasis. Similarly, when evaluated in vitro, silver nanoparticles 

which using a Mentha longifolia (L.) (Aqueous Extract). The leaves can cause death of 66% of Leishmania (Javed et al., 

2020). In order to produce silver nanoparticles, (Awad et al., 2021) used myrrh (Commiphora molmol). The antiparasitic 

efficacy of the MSNPs was evaluated on L. major, and both in vivo and in vitro experiments showed that MSNPs were 

superior to pentostam and CNPs. Thus, MSNPs may be excellent choices for a range of nanomedicine applications. The 

effect of Ag-NPs that generated from ginger rhizome extract on L. major promastigotes and amastigotes was to be 

effective, and it exhibited an inverse relationship with concentration, Ag-NPs caused programed cell death in L. major 

promastigotes and showed 60.18% of apoptosis (Mohammadi et al., 2021). Additionally, it was discovered that silver 

nanoparticles phytosynthesized with Sechium edule were effective in killing L. donovani that their activity was dosage 

dependent (Baranwal et al., 2018). Silver NPs showed dose-dependent cytotoxic activity against L. tropica by use of 

Flammulina velutipes (Faisal et al., 2021). 

There are many studies on the biosynthesis of AgNPs from other microorganisms (fungi) and their anti-leishmanial 

effect of which study the effects of Fusarium graminarum AgNPs on L. tropica , where found that these particles have a 

significant impact on number of parasites; the number of parasites decreased after 24, 48, and 72 hours compared to 

pentostam and the control( Mohammed et al., 2019).In a second study, the same fungus was used to synthesize AgNP and 

study their effect on Leishmania donovani, where results recorded a significant gradual decrease in viability of the parasite 

within infected macrophage cells with the concentrations and the time (Ghadi et al., 2018). In another study, silver NPs 

biosynthesized with Fusarium oxysporium fungus killed L. amazonensis promastigotes and amastigotes in vitro due to 

increased ROS formation, loss of mitochondrial integrity, destruction of membrane, reduction of infected macrophages, 

and decrease of intracellular amastigotes. Another research used corn-extracted nanoxylan-containing silver NPs. 

Compared to free nanoxylan, NPs reduced L. amazonensis promastigotes' vitality (Viana et al., 2020). Additionally, (Jebali 

and Kazemi, 2013) showed that visible light, IR ray, and UV increased the anti-leishmanial activity of many inorganic NPs. 

UV light suppressed L. tropica promastigotes' growth and metabolic activity, a leishmanicidal effect of silver NPS 

(Allahverdiyev et al., 2011). 

 

• Gold nanoparticels (AuNPS) 

AuNPs have the potential to treat a number of illnesses (Dykman, 2020). AuNPs can be quite effective against 

different pathogenic parasites important for public health, among them there are protistias (Benellei, 2018). One 

experiment spotted in the area of skin injuries, AuNP-integrated into natural rubber membranes targeted leishmania 

promastigotes. The experiments had an outcome consisting of a retardation in the proliferation rate, changed behavior 

and reduction in lifespan of the organisms (Barboza-Filho et al., 2013). Effect of gold NPs treatment simulated with 

microwave at (2450 MHz) on L. major promastigotes and intracellular amastigotes as opposed for thermotherapy 

revealed that gold NPs alone significantly reduced the parasite survival rate of promastigotes after 48 hours of 

incubation and those of intra- J744 cell amastigotes after 24 hours The investigation conducted in conjunction with the 

other concerned the interactions of the Gold NPs prepared utilizing the plant species Rhazya stricta decne with the intra 

cellular amastigot cells of L. tropica. After two days of incubation, these Gold NPs were found to be inhibiting the 

intracellular amastigotes growth while being non-cytotoxic to the THP-1 cells (Uniform sized gold NPs were initially 

expected with use of polyphenolic substances. This inhibits growth of L. donovani in all forms, wild type as well as both 

sodium stibogluconate and paromomycin resistant. The NPs were shown to be low toxic and macrophages carry them 

in less than one hour. Furthermore, their effectiveness against drug-resistant strains (SSG, paromomycin) was 

demonstrated, and they demonstrated a high selectivity index (Das et al., 2013).  

 

•  Selenium nanoparticles (SeNPs) 

In the recent studies,some protozoa including Trypanosoma and Leishmania, have been found to require trace levels 

of selenium ions as potential drugs, with encouraging results (Lobanov et al., 2006). According to Beheshti et al. (2013), 

biogenic selenium nanoparticles may be employed as a potential therapeutic agent to treat the local lesions associated 

with cutaneous leishmaniasis, In vitro and in animal models, the growth of L. major amastigote and promastigote forms is 

inhibited by selenium nanoparticles. Furthermore, Se NPS can prevent L. tropica's promastigote and amastigote growth 

(Mahmoudvand et al., 2014). 

 

• Metal Oxide Nanoparticles 

Zinc Oxide Nanoparticles (ZnONPs) 

GRAS (generally regarded as safe) substance zinc oxide being ZnO NPs bring along the use of zinc oxide nanoparticles 

(ZnO NPs) in lipstick, moisturizers, sunscreen creams and deodorants. However, many researchers have been involved in 

creating considerable volumes of ZnO NPs and using them in different biomedical applications (Hameed et al., 2019). ZnO 

rod-shape NPs of L. ledebourii tuber was helpful in mitigation of L. major growth in in vitro; similar to other previous 
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studies on plant extract the effect also depended on the dose (Khatami et al., 2020). The in vitro culture medium also 

contained different levels of ZnONPs (0.18 µg/mL, 0.37 µg/mL and 0.75 µg/mL and 1.5 µg/mL) where the treatment was 

done on the L. donovani amastigote forms. Using the colorimetric assay to assess the cell viability data, it was revealed that 

the ZnONPs treated amastigote cells had a cytotoxic effect, and impeded their proliferation whose activity also got 

suppressed by L. donovani. As given in the study, ZnONPs would generate a unique and lightweight formation for anti-

leishmanial medications (Delavari et al., 2014). The plants (Verbena officinalis and Verbena tenuisecta) leaf extracts were 

produced by Sumaira et al. (2018) to obtain ZnONPs , and the evaluation of their superb anti-Leishmanias efficiency 

demonstrated that the ZnONPs derived from the leaf extract of the V. officinalis was a better option because of its higher 

phenolic amount as In addition, a synergistic effect was observed when the ZnO NPs were decorated with Geranium 

wallichianum leaf extracts increasing the leishmanicidal activity of the nanozymes, (Abbasi et al., 2020). In further the like 

manner, the Sageretia thea water-based extract derived ZnO NPs were proven to be effective against L. tropica both 

promastigote and amastigote stage (Khalil et al., 2017). Zn NPs mixed in carbon or nitrogen to examine ability to kill L. 

tropica promastigote, it have ability to limitation of the growth by ROS generation. It has anti leishmanial effects (Nazir et 

al., 2019). Zn NPs biosynthetic in water and some solutions showed anti leishmanial effects (Ali et al., 2017). 

 

Titanium Dioxide (TiO2) 

The material with a semiconductor property, namely titanium dioxide (TiO2), induces antibacterial and 

photocatalytic features under UV radiation (Lopera et al., 2018). Moreover, the nanoparticles show enhanced the toxic 

effects of the particles when IR and UV light will be used together. It is by the production of the heat and the reactive 

oxygen species. The next option for CL is the application of photodynamic therapy where TiO2 NPs combined with UV 

light causes killing of the viruses. In this regard, prophylactic treatment should use different concentrations of TiO2 NPs 

(Rutile, Anatase) together with UVA and UVB to attain photodynamic treatment; the performance should be measured 

by variation in the death of promastigotes as the result of the various levels of TiO2 NPs and the types of UV light 

(Dolat et al. 2020). Through the strategic association between them, Lopera and associates came up with TiO2 

nanostructure doped with multiple metals such as Zn, Fe, and Pt to induce ROS upon exposing light to visible light 

spectrum. When macropthages that were engaged with morpholonnate L. amazonensis amastigotes were treated by 

using different TiO2 respect to palladium and zinc, and then exposed to visible light, both doped Pt and Zn TiO2 

showed a strong antiamastigote potential that was accompanied by elevation in ROS production (Lopera et al., 2018). 

Adding to that, findings of Jebali and Kazemi (2013) showed that TiO2 NPs change significantly features of L. major 

promastigotes as well as possessing antileishmanial activity. While blue light is a good source of producer of the 

Saharan haze, the effect of UV and IR rays on this issue is also noticeable. 

 

Iron Oxide Nanoparticles (Fe3O4) 

Iron oxides engineered nanoparticles (NPs) that have a wide utility in biomedical applications have even obtained 

FDA and EU approval as iron replacements or as contrast agents (Bobo et al., 2016). In this type of applications, 

hydrophilic decorating agents such as ligands are typically used to improve the stability of the nanoparticles in 

aqueous media (Moise et al., 2017). Fe3O4 NPs that is functionalized by citric acid for the elimination of L. Mexicana 

amastigotes in the cell culture medium were achieved, and magnetic hyperthermia evaluation was done using 

nanoparticles. The results revealed the potential therapeutic effect of this form of treatment in the obliteration of 

intracellular amastigotes in a heat-dependent manner. Furthermore, it elaborated a theoretical framework of the 

potential mechanism through which amastigotes respond to the host system challenged by heat (Berry et al., 2019). 

Where kind, Rosmarinus officinalis based NPs were synthesized in the presence of Fe3O4 and tested for 

antileishmanial efficacy (the efficacy of the newly synthesized nanoparticles against L. major promastigotes), the 

antileishmanial activity was dose dependent (Khatami et al., 2017). Finally, Trigonella foenum-graecum-synthesised 

ferromagnetic iron oxide nanorods (FIONs) demonstrated considerably greater leishmanicidal capabilities against L. 

tropica forms when exposed to LED light than when co-administered with AmB in the dark. ROS production was shown 

to cause growth impedance (Islam et al., 2020). 

 

Magnesium Oxide Nanoparticles (MgONPs) 

MgONPs are a desirable substitute for heavy metal-based NPS like ZnO because they are metabolized easily. 

Furthermore, renal function is normal, the body can effectively remove the products of Mg2+ and OH- ions, allaying 

worries about excessive metal accumulation (Nguyen et al., 2018). So Bafghi et al. (2015) investigated the impact of 

glucose-coated MgONPs) on L.major by the gene analysis of (GP63, CPB). It was demonstrated that longer incubation 

times and higher NP concentrations reduced cell viability while increased concentration also resulted in a decrease in 

gene expression, but not incubation time. Surprisingly, gene silencing was accomplished using NPs at non-toxic 

quantities. Also, in vitro research was also done on L. major and the impact of lectin-coated MgO NPs, The results 

showed that the functionalized NPs had high levels of macrophage activation and leishmanicidal action  (Jebali et al., 

2014). As for Tavakoli and his co-workers they have demonstrated that Mn2O3 NPs are advantageous effect to L. major 

promastigotes both in vitro and in vivo, and they may be a good option for treating this illness. According to flow 

cytometry studies, Mn2O3 NPs in vitro caused apoptosis in almost 57% of the promastigotes. In vivo investigations, the 
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mice's survival rate was higher than that of the control group and the ulcers' size was dramatically decreased (Tavakoli 

et al., 2019). 

Nickel Oxide Nanoparticles (NiO NPs) 

NiO NPs are widely used in biomedical applications due to their excellent qualities, tiny size, and biocompatibility. The 

greatest thing is the fact that they have a very good outcome in fighting the bacteria and they post the hope that they will 

one day be selected as the drugs against leishmaniasis. A recent work involving the antileishmanial activity of NiO NPs 

synthesised bio-chemically at Sageretia thea aqueous leaf extract level was evaluated and compared against L. tropica 

amastigote and promastigote cultures. A mastigotes and promastigotes were all found to be dose-dependently decreased 

(Khalil et al., 2018). Nevertheless, there is another evidence which is very informative where (NiONPs) biosynthesised with 

floral extracts from Callistemon viminalis persistently prevent the growth and even act on the kill L. tropica promastigotes 

(Sani et al., 2020). Artificial tulips of Iqbal and his team along with Rhamnus virgata extraction can lead to NiO NPs, this 

results in antileishmanial potential with the values of amastigotes and promastigotes of L. tropica being 10.62 μg/mL and 

27.58 μg/mL, respectively (Iqbal et al., 2019). 

 

Chromium Oxide Nanoparticles (Cr2O3NPs) 

Cr2O3Nps are useful for treatment many of medical conditions, such as leishmanial (Thakur et al., 2023). Cr2O3-NPs 

were formed from Rhamnus virgata leaf extract and when L. tropica promastigotes and amastigotes were treated with NPs, 

the higher dose is leading into increased cytotoxicity (Iqbal et al., 2020). 

 

Conclusions 

The misuse and contraindications of leishmaniosis chemotherapeutic treatments have restricted their usage; hence 

parasitologists have researched NPs to control the parasite. NPs' non-toxicity and parasite resistance make them a better 

therapy than others. To create safe parasite treatments, additional study is required to understand nanoparticle modes of 

action. NPs produced in various ways may kill or limit parasite development. Nanoparticles may revolutionize Leishmania 

parasite therapy and management. 
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